ardupilot/ArduCopterMega/motors.pde

305 lines
8.2 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define ARM_DELAY 10
#define DISARM_DELAY 10
void arm_motors()
{
static byte arming_counter;
// Arm motor output : Throttle down and full yaw right for more than 2 seconds
if (g.rc_3.control_in == 0){
if (g.rc_4.control_in > 2700) {
if (arming_counter > ARM_DELAY) {
motor_armed = true;
} else{
arming_counter++;
}
}else if (g.rc_4.control_in < -2700) {
if (arming_counter > DISARM_DELAY){
motor_armed = false;
}else{
arming_counter++;
}
}else{
arming_counter = 0;
}
}
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
void
set_servos_4()
{
static byte num;
int out_min;
// Quadcopter mix
if (motor_armed == true && motor_auto_safe == true) {
out_min = g.rc_3.radio_min;
// Throttle is 0 to 1000 only
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + 50;
//Serial.printf("out: %d %d %d %d\t\t", g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.servo_out, g.rc_4.servo_out);
// creates the radio_out and pwm_out values
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
//Serial.printf("out: %d %d %d %d\n", g.rc_1.radio_out, g.rc_2.radio_out, g.rc_3.radio_out, g.rc_4.radio_out);
//Serial.printf("yaw: %d ", g.rc_4.radio_out);
if(g.frame_type == PLUS_FRAME){
//Serial.println("P_FRAME");
motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out;
motor_out[CH_2] = g.rc_3.radio_out + g.rc_1.pwm_out;
motor_out[CH_3] = g.rc_3.radio_out + g.rc_2.pwm_out;
motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out;
motor_out[CH_1] += g.rc_4.pwm_out; // CCW
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
}else if(g.frame_type == X_FRAME){
//Serial.println("X_FRAME");
int roll_out = g.rc_1.pwm_out * .707;
int pitch_out = g.rc_2.pwm_out * .707;
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out;
motor_out[CH_2] = g.rc_3.radio_out + roll_out - pitch_out;
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out;
motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out;
//Serial.printf("\tb4: %d %d %d %d ", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]);
motor_out[CH_1] += g.rc_4.pwm_out; // CCW
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
//Serial.printf("\tl8r: %d %d %d %d\n", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]);
}else if(g.frame_type == TRI_FRAME){
//Serial.println("TRI_FRAME");
// Tri-copter power distribution
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
// front two motors
motor_out[CH_2] = g.rc_3.radio_out + roll_out + pitch_out;
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out;
// rear motors
motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out;
// this is a compensation for the angle of the yaw motor. Its linear, but should work ok.
motor_out[CH_4] += (float)(abs(g.rc_4.control_in)) * .013;
// servo Yaw
APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
}else if (g.frame_type == HEXA_FRAME) {
//Serial.println("6_FRAME");
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
//left side
motor_out[CH_2] = g.rc_3.radio_out + g.rc_1.pwm_out; // CCW
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW
motor_out[CH_8] = g.rc_3.radio_out + roll_out - pitch_out; // CW
//right side
motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW
motor_out[CH_7] = g.rc_3.radio_out - roll_out + pitch_out; // CCW
motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW
motor_out[CH_7] += g.rc_4.pwm_out; // CCW
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_4] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_1] -= g.rc_4.pwm_out; // CW
motor_out[CH_8] -= g.rc_4.pwm_out; // CW
}else{
Serial.print("frame error");
}
// limit output so motors don't stop
motor_out[CH_1] = constrain(motor_out[CH_1], out_min, g.rc_3.radio_max.get());
motor_out[CH_2] = constrain(motor_out[CH_2], out_min, g.rc_3.radio_max.get());
motor_out[CH_3] = constrain(motor_out[CH_3], out_min, g.rc_3.radio_max.get());
motor_out[CH_4] = constrain(motor_out[CH_4], out_min, g.rc_3.radio_max.get());
if (g.frame_type == HEXA_FRAME) {
motor_out[CH_7] = constrain(motor_out[CH_7], out_min, g.rc_3.radio_max.get());
motor_out[CH_8] = constrain(motor_out[CH_8], out_min, g.rc_3.radio_max.get());
}
num++;
if (num > 50){
num = 0;
/*
Serial.printf("t_alt:%ld, alt:%ld, thr: %d sen: ",
target_altitude,
current_loc.alt,
g.rc_3.servo_out);
if(altitude_sensor == BARO){
Serial.println("Baro");
}else{
Serial.println("Sonar");
}
*/
//Serial.print("!");
//debugging with Channel 6
//g.pid_baro_throttle.kD((float)g.rc_6.control_in / 1000); // 0 to 1
//g.pid_baro_throttle.kP((float)g.rc_6.control_in / 4000); // 0 to .25
/*
// ROLL and PITCH
// make sure you init_pids() after changing the kP
g.pid_stabilize_roll.kP((float)g.rc_6.control_in / 1000);
init_pids();
//Serial.print("kP: ");
//Serial.println(g.pid_stabilize_roll.kP(),3);
//*/
/*
// YAW
// make sure you init_pids() after changing the kP
g.pid_yaw.kP((float)g.rc_6.control_in / 1000);
init_pids();
//*/
/*
write_int(motor_out[CH_1]);
write_int(motor_out[CH_2]);
write_int(motor_out[CH_3]);
write_int(motor_out[CH_4]);
write_int(g.rc_3.servo_out);
write_int((int)(cos_yaw_x * 100));
write_int((int)(sin_yaw_y * 100));
write_int((int)(dcm.yaw_sensor / 100));
write_int((int)(nav_yaw / 100));
write_int((int)nav_lat);
write_int((int)nav_lon);
write_int((int)nav_roll);
write_int((int)nav_pitch);
//24
write_long(current_loc.lat); //28
write_long(current_loc.lng); //32
write_int((int)current_loc.alt); //34
write_long(next_WP.lat);
write_long(next_WP.lng);
write_int((int)next_WP.alt); //44
flush(10);
//*/
/*Serial.printf("a %ld, e %ld, i %d, t %d, b %4.2f\n",
current_loc.alt,
altitude_error,
(int)g.pid_baro_throttle.get_integrator(),
nav_throttle,
angle_boost());
*/
}
// Send commands to motors
if(g.rc_3.servo_out > 0){
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
if (g.frame_type == HEXA_FRAME) {
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
APM_RC.Force_Out6_Out7();
}
}else{
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
if (g.frame_type == HEXA_FRAME) {
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
APM_RC.Force_Out6_Out7();
}
}
}else{
// our motor is unarmed, we're on the ground
reset_I();
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_safe = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
if (g.frame_type == HEXA_FRAME) {
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
}
// reset I terms of PID controls
reset_I();
// Initialize yaw command to actual yaw when throttle is down...
g.rc_4.control_in = ToDeg(dcm.yaw);
}
}