mirror of https://github.com/ArduPilot/ardupilot
2051 lines
70 KiB
C++
2051 lines
70 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
AP_Periph can support
|
|
*/
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "AP_Periph.h"
|
|
#include <canard.h>
|
|
#include <uavcan/protocol/dynamic_node_id/Allocation.h>
|
|
#include <uavcan/protocol/NodeStatus.h>
|
|
#include <uavcan/protocol/RestartNode.h>
|
|
#include <uavcan/protocol/GetNodeInfo.h>
|
|
#include <uavcan/protocol/file/BeginFirmwareUpdate.h>
|
|
#include <uavcan/protocol/param/GetSet.h>
|
|
#include <uavcan/protocol/param/ExecuteOpcode.h>
|
|
#include <uavcan/equipment/ahrs/MagneticFieldStrength.h>
|
|
#include <uavcan/equipment/gnss/Fix.h>
|
|
#include <uavcan/equipment/gnss/Fix2.h>
|
|
#include <uavcan/equipment/gnss/Auxiliary.h>
|
|
#include <uavcan/equipment/air_data/StaticPressure.h>
|
|
#include <uavcan/equipment/air_data/StaticTemperature.h>
|
|
#include <uavcan/equipment/air_data/RawAirData.h>
|
|
#include <uavcan/equipment/indication/BeepCommand.h>
|
|
#include <uavcan/equipment/indication/LightsCommand.h>
|
|
#include <uavcan/equipment/range_sensor/Measurement.h>
|
|
#include <uavcan/equipment/hardpoint/Command.h>
|
|
#include <uavcan/equipment/esc/Status.h>
|
|
#include <uavcan/equipment/safety/ArmingStatus.h>
|
|
#include <ardupilot/indication/SafetyState.h>
|
|
#include <ardupilot/indication/Button.h>
|
|
#include <ardupilot/equipment/trafficmonitor/TrafficReport.h>
|
|
#include <ardupilot/gnss/Status.h>
|
|
#include <uavcan/equipment/gnss/RTCMStream.h>
|
|
#include <uavcan/equipment/power/BatteryInfo.h>
|
|
#include <uavcan/protocol/debug/LogMessage.h>
|
|
#include <uavcan/equipment/esc/RawCommand.h>
|
|
#include <uavcan/equipment/actuator/ArrayCommand.h>
|
|
#include <uavcan/equipment/actuator/Command.h>
|
|
#include <stdio.h>
|
|
#include <drivers/stm32/canard_stm32.h>
|
|
#include <AP_HAL/I2CDevice.h>
|
|
#include <AP_HAL/utility/RingBuffer.h>
|
|
#include <AP_Common/AP_FWVersion.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
|
|
#include "../AP_Bootloader/app_comms.h"
|
|
#include <AP_HAL_ChibiOS/CANIface.h>
|
|
#include <AP_HAL_ChibiOS/hwdef/common/stm32_util.h>
|
|
#include <AP_HAL_ChibiOS/hwdef/common/watchdog.h>
|
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
#include <AP_HAL_SITL/CANSocketIface.h>
|
|
#endif
|
|
|
|
|
|
#include "i2c.h"
|
|
#include <utility>
|
|
|
|
extern const AP_HAL::HAL &hal;
|
|
extern AP_Periph_FW periph;
|
|
|
|
#ifndef HAL_CAN_POOL_SIZE
|
|
#define HAL_CAN_POOL_SIZE 4000
|
|
#endif
|
|
|
|
static CanardInstance canard;
|
|
static uint32_t canard_memory_pool[HAL_CAN_POOL_SIZE/sizeof(uint32_t)];
|
|
#ifndef HAL_CAN_DEFAULT_NODE_ID
|
|
#define HAL_CAN_DEFAULT_NODE_ID CANARD_BROADCAST_NODE_ID
|
|
#endif
|
|
static uint8_t PreferredNodeID = HAL_CAN_DEFAULT_NODE_ID;
|
|
static uint8_t transfer_id;
|
|
|
|
#ifndef CAN_APP_NODE_NAME
|
|
#define CAN_APP_NODE_NAME "org.ardupilot.ap_periph"
|
|
#endif
|
|
|
|
#ifndef AP_PERIPH_BATTERY_MODEL_NAME
|
|
#define AP_PERIPH_BATTERY_MODEL_NAME CAN_APP_NODE_NAME
|
|
#endif
|
|
|
|
#ifndef CAN_PROBE_CONTINUOUS
|
|
#define CAN_PROBE_CONTINUOUS 0
|
|
#endif
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
|
|
static ChibiOS::CANIface can_iface[HAL_NUM_CAN_IFACES];
|
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
static HALSITL::CANIface can_iface[HAL_NUM_CAN_IFACES];
|
|
#endif
|
|
/*
|
|
* Variables used for dynamic node ID allocation.
|
|
* RTFM at http://uavcan.org/Specification/6._Application_level_functions/#dynamic-node-id-allocation
|
|
*/
|
|
static uint32_t send_next_node_id_allocation_request_at_ms; ///< When the next node ID allocation request should be sent
|
|
static uint8_t node_id_allocation_unique_id_offset; ///< Depends on the stage of the next request
|
|
|
|
/*
|
|
* Node status variables
|
|
*/
|
|
static uavcan_protocol_NodeStatus node_status;
|
|
|
|
|
|
/**
|
|
* Returns a pseudo random integer in a given range
|
|
*/
|
|
static uint16_t get_random_range(uint16_t range)
|
|
{
|
|
return get_random16() % range;
|
|
}
|
|
|
|
|
|
/*
|
|
get cpu unique ID
|
|
*/
|
|
static void readUniqueID(uint8_t* out_uid)
|
|
{
|
|
uint8_t len = UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_UNIQUE_ID_MAX_LENGTH;
|
|
memset(out_uid, 0, len);
|
|
hal.util->get_system_id_unformatted(out_uid, len);
|
|
}
|
|
|
|
|
|
/*
|
|
handle a GET_NODE_INFO request
|
|
*/
|
|
static void handle_get_node_info(CanardInstance* ins,
|
|
CanardRxTransfer* transfer)
|
|
{
|
|
uint8_t buffer[UAVCAN_PROTOCOL_GETNODEINFO_RESPONSE_MAX_SIZE] {};
|
|
uavcan_protocol_GetNodeInfoResponse pkt {};
|
|
|
|
node_status.uptime_sec = AP_HAL::native_millis() / 1000U;
|
|
|
|
pkt.status = node_status;
|
|
pkt.software_version.major = AP::fwversion().major;
|
|
pkt.software_version.minor = AP::fwversion().minor;
|
|
pkt.software_version.optional_field_flags = UAVCAN_PROTOCOL_SOFTWAREVERSION_OPTIONAL_FIELD_FLAG_VCS_COMMIT | UAVCAN_PROTOCOL_SOFTWAREVERSION_OPTIONAL_FIELD_FLAG_IMAGE_CRC;
|
|
pkt.software_version.vcs_commit = app_descriptor.git_hash;
|
|
uint32_t *crc = (uint32_t *)&pkt.software_version.image_crc;
|
|
crc[0] = app_descriptor.image_crc1;
|
|
crc[1] = app_descriptor.image_crc2;
|
|
|
|
readUniqueID(pkt.hardware_version.unique_id);
|
|
|
|
// use hw major/minor for APJ_BOARD_ID so we know what fw is
|
|
// compatible with this hardware
|
|
pkt.hardware_version.major = APJ_BOARD_ID >> 8;
|
|
pkt.hardware_version.minor = APJ_BOARD_ID & 0xFF;
|
|
|
|
char text[UAVCAN_PROTOCOL_GETNODEINFO_RESPONSE_NAME_MAX_LENGTH+1];
|
|
if (periph.g.serial_number > 0) {
|
|
hal.util->snprintf(text, sizeof(text), "%s(%u)", CAN_APP_NODE_NAME, (unsigned)periph.g.serial_number);
|
|
} else {
|
|
hal.util->snprintf(text, sizeof(text), "%s", CAN_APP_NODE_NAME);
|
|
}
|
|
pkt.name.len = strlen(text);
|
|
pkt.name.data = (uint8_t *)text;
|
|
|
|
uint16_t total_size = uavcan_protocol_GetNodeInfoResponse_encode(&pkt, buffer);
|
|
|
|
const int16_t resp_res = canardRequestOrRespond(ins,
|
|
transfer->source_node_id,
|
|
UAVCAN_PROTOCOL_GETNODEINFO_SIGNATURE,
|
|
UAVCAN_PROTOCOL_GETNODEINFO_ID,
|
|
&transfer->transfer_id,
|
|
transfer->priority,
|
|
CanardResponse,
|
|
&buffer[0],
|
|
total_size);
|
|
if (resp_res <= 0) {
|
|
printf("Could not respond to GetNodeInfo: %d\n", resp_res);
|
|
}
|
|
}
|
|
|
|
/*
|
|
handle parameter GetSet request
|
|
*/
|
|
static void handle_param_getset(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
// param fetch all can take a long time, so pat watchdog
|
|
stm32_watchdog_pat();
|
|
|
|
uavcan_protocol_param_GetSetRequest req;
|
|
uint8_t arraybuf[UAVCAN_PROTOCOL_PARAM_GETSET_REQUEST_NAME_MAX_LENGTH];
|
|
uint8_t *arraybuf_ptr = arraybuf;
|
|
if (uavcan_protocol_param_GetSetRequest_decode(transfer, transfer->payload_len, &req, &arraybuf_ptr) < 0) {
|
|
return;
|
|
}
|
|
|
|
uavcan_protocol_param_GetSetResponse pkt {};
|
|
|
|
uint8_t name[AP_MAX_NAME_SIZE+1] {};
|
|
AP_Param *vp;
|
|
enum ap_var_type ptype;
|
|
|
|
if (req.name.len != 0 && req.name.len > AP_MAX_NAME_SIZE) {
|
|
vp = nullptr;
|
|
} else if (req.name.len != 0 && req.name.len <= AP_MAX_NAME_SIZE) {
|
|
strncpy((char *)name, (char *)req.name.data, req.name.len);
|
|
vp = AP_Param::find((char *)name, &ptype);
|
|
} else {
|
|
AP_Param::ParamToken token {};
|
|
vp = AP_Param::find_by_index(req.index, &ptype, &token);
|
|
if (vp != nullptr) {
|
|
vp->copy_name_token(token, (char *)name, AP_MAX_NAME_SIZE+1, true);
|
|
}
|
|
}
|
|
if (vp != nullptr && req.name.len != 0 && req.value.union_tag != UAVCAN_PROTOCOL_PARAM_VALUE_EMPTY) {
|
|
// param set
|
|
switch (ptype) {
|
|
case AP_PARAM_INT8:
|
|
if (req.value.union_tag != UAVCAN_PROTOCOL_PARAM_VALUE_INTEGER_VALUE) {
|
|
return;
|
|
}
|
|
((AP_Int8 *)vp)->set_and_save_ifchanged(req.value.integer_value);
|
|
break;
|
|
case AP_PARAM_INT16:
|
|
if (req.value.union_tag != UAVCAN_PROTOCOL_PARAM_VALUE_INTEGER_VALUE) {
|
|
return;
|
|
}
|
|
((AP_Int16 *)vp)->set_and_save_ifchanged(req.value.integer_value);
|
|
break;
|
|
case AP_PARAM_INT32:
|
|
if (req.value.union_tag != UAVCAN_PROTOCOL_PARAM_VALUE_INTEGER_VALUE) {
|
|
return;
|
|
}
|
|
((AP_Int32 *)vp)->set_and_save_ifchanged(req.value.integer_value);
|
|
break;
|
|
case AP_PARAM_FLOAT:
|
|
if (req.value.union_tag != UAVCAN_PROTOCOL_PARAM_VALUE_REAL_VALUE) {
|
|
return;
|
|
}
|
|
((AP_Float *)vp)->set_and_save_ifchanged(req.value.real_value);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
if (vp != nullptr) {
|
|
switch (ptype) {
|
|
case AP_PARAM_INT8:
|
|
pkt.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_INTEGER_VALUE;
|
|
pkt.value.integer_value = ((AP_Int8 *)vp)->get();
|
|
break;
|
|
case AP_PARAM_INT16:
|
|
pkt.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_INTEGER_VALUE;
|
|
pkt.value.integer_value = ((AP_Int16 *)vp)->get();
|
|
break;
|
|
case AP_PARAM_INT32:
|
|
pkt.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_INTEGER_VALUE;
|
|
pkt.value.integer_value = ((AP_Int32 *)vp)->get();
|
|
break;
|
|
case AP_PARAM_FLOAT:
|
|
pkt.value.union_tag = UAVCAN_PROTOCOL_PARAM_VALUE_REAL_VALUE;
|
|
pkt.value.real_value = ((AP_Float *)vp)->get();
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
pkt.name.len = strlen((char *)name);
|
|
pkt.name.data = name;
|
|
}
|
|
|
|
uint8_t buffer[UAVCAN_PROTOCOL_PARAM_GETSET_RESPONSE_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_protocol_param_GetSetResponse_encode(&pkt, buffer);
|
|
|
|
canardRequestOrRespond(ins,
|
|
transfer->source_node_id,
|
|
UAVCAN_PROTOCOL_PARAM_GETSET_SIGNATURE,
|
|
UAVCAN_PROTOCOL_PARAM_GETSET_ID,
|
|
&transfer->transfer_id,
|
|
transfer->priority,
|
|
CanardResponse,
|
|
&buffer[0],
|
|
total_size);
|
|
|
|
}
|
|
|
|
/*
|
|
handle parameter executeopcode request
|
|
*/
|
|
static void handle_param_executeopcode(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
uavcan_protocol_param_ExecuteOpcodeRequest req;
|
|
if (uavcan_protocol_param_ExecuteOpcodeRequest_decode(transfer, transfer->payload_len, &req, nullptr) < 0) {
|
|
return;
|
|
}
|
|
if (req.opcode == UAVCAN_PROTOCOL_PARAM_EXECUTEOPCODE_REQUEST_OPCODE_ERASE) {
|
|
StorageManager::erase();
|
|
AP_Param::erase_all();
|
|
AP_Param::load_all();
|
|
AP_Param::setup_sketch_defaults();
|
|
#ifdef HAL_PERIPH_ENABLE_GPS
|
|
AP_Param::setup_object_defaults(&periph.gps, periph.gps.var_info);
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_BATTERY
|
|
AP_Param::setup_object_defaults(&periph.battery, periph.battery.lib.var_info);
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_MAG
|
|
AP_Param::setup_object_defaults(&periph.compass, periph.compass.var_info);
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_BARO
|
|
AP_Param::setup_object_defaults(&periph.baro, periph.baro.var_info);
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_AIRSPEED
|
|
AP_Param::setup_object_defaults(&periph.airspeed, periph.airspeed.var_info);
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_RANGEFINDER
|
|
AP_Param::setup_object_defaults(&periph.rangefinder, periph.rangefinder.var_info);
|
|
#endif
|
|
}
|
|
|
|
uavcan_protocol_param_ExecuteOpcodeResponse pkt {};
|
|
|
|
pkt.ok = true;
|
|
|
|
uint8_t buffer[UAVCAN_PROTOCOL_PARAM_EXECUTEOPCODE_RESPONSE_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_protocol_param_ExecuteOpcodeResponse_encode(&pkt, buffer);
|
|
|
|
canardRequestOrRespond(ins,
|
|
transfer->source_node_id,
|
|
UAVCAN_PROTOCOL_PARAM_EXECUTEOPCODE_SIGNATURE,
|
|
UAVCAN_PROTOCOL_PARAM_EXECUTEOPCODE_ID,
|
|
&transfer->transfer_id,
|
|
transfer->priority,
|
|
CanardResponse,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
|
|
static void processTx(void);
|
|
static void processRx(void);
|
|
|
|
static void handle_begin_firmware_update(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
#if HAL_RAM_RESERVE_START >= 256
|
|
// setup information on firmware request at start of ram
|
|
struct app_bootloader_comms *comms = (struct app_bootloader_comms *)HAL_RAM0_START;
|
|
memset(comms, 0, sizeof(struct app_bootloader_comms));
|
|
comms->magic = APP_BOOTLOADER_COMMS_MAGIC;
|
|
|
|
// manual decoding due to TAO bug in libcanard generated code
|
|
if (transfer->payload_len < 1 || transfer->payload_len > sizeof(comms->path)+1) {
|
|
return;
|
|
}
|
|
uint32_t offset = 0;
|
|
canardDecodeScalar(transfer, 0, 8, false, (void*)&comms->server_node_id);
|
|
offset += 8;
|
|
for (uint8_t i=0; i<transfer->payload_len-1; i++) {
|
|
canardDecodeScalar(transfer, offset, 8, false, (void*)&comms->path[i]);
|
|
offset += 8;
|
|
}
|
|
if (comms->server_node_id == 0) {
|
|
comms->server_node_id = transfer->source_node_id;
|
|
}
|
|
comms->my_node_id = canardGetLocalNodeID(ins);
|
|
|
|
uint8_t buffer[UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_RESPONSE_MAX_SIZE] {};
|
|
uavcan_protocol_file_BeginFirmwareUpdateResponse reply {};
|
|
reply.error = UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_RESPONSE_ERROR_OK;
|
|
|
|
uint32_t total_size = uavcan_protocol_file_BeginFirmwareUpdateResponse_encode(&reply, buffer);
|
|
canardRequestOrRespond(ins,
|
|
transfer->source_node_id,
|
|
UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_SIGNATURE,
|
|
UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_ID,
|
|
&transfer->transfer_id,
|
|
transfer->priority,
|
|
CanardResponse,
|
|
&buffer[0],
|
|
total_size);
|
|
uint8_t count = 50;
|
|
while (count--) {
|
|
processTx();
|
|
hal.scheduler->delay(1);
|
|
}
|
|
#endif
|
|
|
|
// instant reboot, with backup register used to give bootloader
|
|
// the node_id
|
|
periph.prepare_reboot();
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
|
|
set_fast_reboot((rtc_boot_magic)(RTC_BOOT_CANBL | canardGetLocalNodeID(ins)));
|
|
NVIC_SystemReset();
|
|
#endif
|
|
}
|
|
|
|
static void handle_allocation_response(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
// Rule C - updating the randomized time interval
|
|
send_next_node_id_allocation_request_at_ms =
|
|
AP_HAL::native_millis() + UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MIN_REQUEST_PERIOD_MS +
|
|
get_random_range(UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MAX_FOLLOWUP_DELAY_MS);
|
|
|
|
if (transfer->source_node_id == CANARD_BROADCAST_NODE_ID)
|
|
{
|
|
printf("Allocation request from another allocatee\n");
|
|
node_id_allocation_unique_id_offset = 0;
|
|
return;
|
|
}
|
|
|
|
// Copying the unique ID from the message
|
|
static const uint8_t UniqueIDBitOffset = 8;
|
|
uint8_t received_unique_id[UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_UNIQUE_ID_MAX_LENGTH];
|
|
uint8_t received_unique_id_len = 0;
|
|
for (; received_unique_id_len < (transfer->payload_len - (UniqueIDBitOffset / 8U)); received_unique_id_len++) {
|
|
const uint8_t bit_offset = (uint8_t)(UniqueIDBitOffset + received_unique_id_len * 8U);
|
|
(void) canardDecodeScalar(transfer, bit_offset, 8, false, &received_unique_id[received_unique_id_len]);
|
|
}
|
|
|
|
// Obtaining the local unique ID
|
|
uint8_t my_unique_id[UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_UNIQUE_ID_MAX_LENGTH];
|
|
readUniqueID(my_unique_id);
|
|
|
|
// Matching the received UID against the local one
|
|
if (memcmp(received_unique_id, my_unique_id, received_unique_id_len) != 0) {
|
|
printf("Mismatching allocation response\n");
|
|
node_id_allocation_unique_id_offset = 0;
|
|
return; // No match, return
|
|
}
|
|
|
|
if (received_unique_id_len < UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_UNIQUE_ID_MAX_LENGTH) {
|
|
// The allocator has confirmed part of unique ID, switching to the next stage and updating the timeout.
|
|
node_id_allocation_unique_id_offset = received_unique_id_len;
|
|
send_next_node_id_allocation_request_at_ms -= UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MIN_REQUEST_PERIOD_MS;
|
|
|
|
printf("Matching allocation response: %d\n", received_unique_id_len);
|
|
} else {
|
|
// Allocation complete - copying the allocated node ID from the message
|
|
uint8_t allocated_node_id = 0;
|
|
(void) canardDecodeScalar(transfer, 0, 7, false, &allocated_node_id);
|
|
|
|
canardSetLocalNodeID(ins, allocated_node_id);
|
|
printf("Node ID allocated: %d\n", allocated_node_id);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
fix value of a float for canard float16 format
|
|
*/
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-function"
|
|
static void fix_float16(float &f)
|
|
{
|
|
*(uint16_t *)&f = canardConvertNativeFloatToFloat16(f);
|
|
}
|
|
#pragma GCC diagnostic pop
|
|
|
|
|
|
#if defined(HAL_PERIPH_ENABLE_NOTIFY) || defined(HAL_PERIPH_ENABLE_BUZZER_WITHOUT_NOTIFY)
|
|
static uint32_t buzzer_start_ms;
|
|
static uint32_t buzzer_len_ms;
|
|
/*
|
|
handle BeepCommand
|
|
*/
|
|
static void handle_beep_command(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
uavcan_equipment_indication_BeepCommand req;
|
|
if (uavcan_equipment_indication_BeepCommand_decode(transfer, transfer->payload_len, &req, nullptr) < 0) {
|
|
return;
|
|
}
|
|
static bool initialised;
|
|
if (!initialised) {
|
|
initialised = true;
|
|
hal.rcout->init();
|
|
hal.util->toneAlarm_init();
|
|
}
|
|
fix_float16(req.frequency);
|
|
fix_float16(req.duration);
|
|
buzzer_start_ms = AP_HAL::native_millis();
|
|
buzzer_len_ms = req.duration*1000;
|
|
#ifdef HAL_PERIPH_ENABLE_BUZZER_WITHOUT_NOTIFY
|
|
float volume = constrain_float(periph.g.buzz_volume/100.0f, 0, 1);
|
|
#elif defined(HAL_PERIPH_ENABLE_NOTIFY)
|
|
float volume = constrain_float(periph.notify.get_buzz_volume()/100.0f, 0, 1);
|
|
#endif
|
|
hal.util->toneAlarm_set_buzzer_tone(req.frequency, volume, uint32_t(req.duration*1000));
|
|
}
|
|
|
|
/*
|
|
update buzzer
|
|
*/
|
|
static void can_buzzer_update(void)
|
|
{
|
|
if (buzzer_start_ms != 0) {
|
|
uint32_t now = AP_HAL::native_millis();
|
|
if (now - buzzer_start_ms > buzzer_len_ms) {
|
|
hal.util->toneAlarm_set_buzzer_tone(0, 0, 0);
|
|
buzzer_start_ms = 0;
|
|
}
|
|
}
|
|
}
|
|
#endif // (HAL_PERIPH_ENABLE_BUZZER_WITHOUT_NOTIFY) || (HAL_PERIPH_ENABLE_NOTIFY)
|
|
|
|
#if defined(HAL_GPIO_PIN_SAFE_LED) || defined(HAL_PERIPH_ENABLE_RC_OUT)
|
|
static uint8_t safety_state;
|
|
|
|
/*
|
|
handle SafetyState
|
|
*/
|
|
static void handle_safety_state(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
ardupilot_indication_SafetyState req;
|
|
if (ardupilot_indication_SafetyState_decode(transfer, transfer->payload_len, &req, nullptr) < 0) {
|
|
return;
|
|
}
|
|
safety_state = req.status;
|
|
#ifdef HAL_PERIPH_ENABLE_RC_OUT
|
|
periph.rcout_handle_safety_state(safety_state);
|
|
#endif
|
|
}
|
|
#endif // HAL_GPIO_PIN_SAFE_LED
|
|
|
|
/*
|
|
handle ArmingStatus
|
|
*/
|
|
static void handle_arming_status(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
uavcan_equipment_safety_ArmingStatus req;
|
|
if (uavcan_equipment_safety_ArmingStatus_decode(transfer, transfer->payload_len, &req, nullptr) < 0) {
|
|
return;
|
|
}
|
|
hal.util->set_soft_armed(req.status == UAVCAN_EQUIPMENT_SAFETY_ARMINGSTATUS_STATUS_FULLY_ARMED);
|
|
}
|
|
|
|
#ifdef HAL_PERIPH_ENABLE_GPS
|
|
/*
|
|
handle gnss::RTCMStream
|
|
*/
|
|
static void handle_RTCMStream(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
uavcan_equipment_gnss_RTCMStream req;
|
|
uint8_t arraybuf[UAVCAN_EQUIPMENT_GNSS_RTCMSTREAM_DATA_MAX_LENGTH];
|
|
uint8_t *arraybuf_ptr = arraybuf;
|
|
if (uavcan_equipment_gnss_RTCMStream_decode(transfer, transfer->payload_len, &req, &arraybuf_ptr) < 0) {
|
|
return;
|
|
}
|
|
periph.gps.handle_gps_rtcm_fragment(0, req.data.data, req.data.len);
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_GPS
|
|
|
|
|
|
#if defined(AP_PERIPH_HAVE_LED_WITHOUT_NOTIFY) || defined(HAL_PERIPH_ENABLE_NOTIFY)
|
|
static void set_rgb_led(uint8_t red, uint8_t green, uint8_t blue)
|
|
{
|
|
#ifdef HAL_PERIPH_ENABLE_NOTIFY
|
|
periph.notify.handle_rgb(red, green, blue);
|
|
periph.rcout_has_new_data_to_update = true;
|
|
#endif // HAL_PERIPH_ENABLE_NOTIFY
|
|
|
|
#ifdef HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY
|
|
hal.rcout->set_serial_led_rgb_data(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY, -1, red, green, blue);
|
|
hal.rcout->serial_led_send(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY);
|
|
#endif // HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY
|
|
|
|
#ifdef HAL_PERIPH_ENABLE_NCP5623_LED_WITHOUT_NOTIFY
|
|
{
|
|
const uint8_t i2c_address = 0x38;
|
|
static AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev;
|
|
if (!dev) {
|
|
dev = std::move(hal.i2c_mgr->get_device(0, i2c_address));
|
|
}
|
|
WITH_SEMAPHORE(dev->get_semaphore());
|
|
dev->set_retries(0);
|
|
uint8_t v = 0x3f; // enable LED
|
|
dev->transfer(&v, 1, nullptr, 0);
|
|
v = 0x40 | red >> 3; // red
|
|
dev->transfer(&v, 1, nullptr, 0);
|
|
v = 0x60 | green >> 3; // green
|
|
dev->transfer(&v, 1, nullptr, 0);
|
|
v = 0x80 | blue >> 3; // blue
|
|
dev->transfer(&v, 1, nullptr, 0);
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_NCP5623_LED_WITHOUT_NOTIFY
|
|
|
|
#ifdef HAL_PERIPH_ENABLE_NCP5623_BGR_LED_WITHOUT_NOTIFY
|
|
{
|
|
const uint8_t i2c_address = 0x38;
|
|
static AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev;
|
|
if (!dev) {
|
|
dev = std::move(hal.i2c_mgr->get_device(0, i2c_address));
|
|
}
|
|
WITH_SEMAPHORE(dev->get_semaphore());
|
|
dev->set_retries(0);
|
|
uint8_t v = 0x3f; // enable LED
|
|
dev->transfer(&v, 1, nullptr, 0);
|
|
v = 0x40 | blue >> 3; // blue
|
|
dev->transfer(&v, 1, nullptr, 0);
|
|
v = 0x60 | green >> 3; // green
|
|
dev->transfer(&v, 1, nullptr, 0);
|
|
v = 0x80 | red >> 3; // red
|
|
dev->transfer(&v, 1, nullptr, 0);
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_NCP5623_BGR_LED_WITHOUT_NOTIFY
|
|
#ifdef HAL_PERIPH_ENABLE_TOSHIBA_LED_WITHOUT_NOTIFY
|
|
{
|
|
#define TOSHIBA_LED_PWM0 0x01 // pwm0 register
|
|
#define TOSHIBA_LED_ENABLE 0x04 // enable register
|
|
#define TOSHIBA_LED_I2C_ADDR 0x55 // default I2C bus address
|
|
|
|
static AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev_toshiba;
|
|
if (!dev_toshiba) {
|
|
dev_toshiba = std::move(hal.i2c_mgr->get_device(0, TOSHIBA_LED_I2C_ADDR));
|
|
}
|
|
WITH_SEMAPHORE(dev_toshiba->get_semaphore());
|
|
dev_toshiba->set_retries(0); // use 0 because this is running on main thread.
|
|
|
|
// enable the led
|
|
dev_toshiba->write_register(TOSHIBA_LED_ENABLE, 0x03);
|
|
|
|
/* 4-bit for each color */
|
|
uint8_t val[4] = {
|
|
TOSHIBA_LED_PWM0,
|
|
(uint8_t)(blue >> 4),
|
|
(uint8_t)(green / 16),
|
|
(uint8_t)(red / 16)
|
|
};
|
|
dev_toshiba->transfer(val, sizeof(val), nullptr, 0);
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_TOSHIBA_LED_WITHOUT_NOTIFY
|
|
}
|
|
|
|
/*
|
|
handle lightscommand
|
|
*/
|
|
static void handle_lightscommand(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
uavcan_equipment_indication_LightsCommand req;
|
|
uint8_t arraybuf[UAVCAN_EQUIPMENT_INDICATION_LIGHTSCOMMAND_MAX_SIZE];
|
|
uint8_t *arraybuf_ptr = arraybuf;
|
|
if (uavcan_equipment_indication_LightsCommand_decode(transfer, transfer->payload_len, &req, &arraybuf_ptr) < 0) {
|
|
return;
|
|
}
|
|
for (uint8_t i=0; i<req.commands.len; i++) {
|
|
uavcan_equipment_indication_SingleLightCommand &cmd = req.commands.data[i];
|
|
// to get the right color proportions we scale the green so that is uses the
|
|
// same number of bits as red and blue
|
|
uint8_t red = cmd.color.red<<3;
|
|
uint8_t green = (cmd.color.green>>1)<<3;
|
|
uint8_t blue = cmd.color.blue<<3;
|
|
#ifdef HAL_PERIPH_ENABLE_NOTIFY
|
|
const int8_t brightness = periph.notify.get_rgb_led_brightness_percent();
|
|
#elif defined(AP_PERIPH_HAVE_LED_WITHOUT_NOTIFY)
|
|
const int8_t brightness = periph.g.led_brightness;
|
|
#endif
|
|
if (brightness != 100 && brightness >= 0) {
|
|
const float scale = brightness * 0.01;
|
|
red = constrain_int16(red * scale, 0, 255);
|
|
green = constrain_int16(green * scale, 0, 255);
|
|
blue = constrain_int16(blue * scale, 0, 255);
|
|
}
|
|
set_rgb_led(red, green, blue);
|
|
}
|
|
}
|
|
#endif // AP_PERIPH_HAVE_LED_WITHOUT_NOTIFY
|
|
|
|
#ifdef HAL_PERIPH_ENABLE_RC_OUT
|
|
static void handle_esc_rawcommand(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
uavcan_equipment_esc_RawCommand cmd;
|
|
uint8_t arraybuf[UAVCAN_EQUIPMENT_ESC_RAWCOMMAND_MAX_SIZE];
|
|
uint8_t *arraybuf_ptr = arraybuf;
|
|
if (uavcan_equipment_esc_RawCommand_decode(transfer, transfer->payload_len, &cmd, &arraybuf_ptr) < 0) {
|
|
return;
|
|
}
|
|
periph.rcout_esc(cmd.cmd.data, cmd.cmd.len);
|
|
}
|
|
|
|
static void handle_act_command(CanardInstance* ins, CanardRxTransfer* transfer)
|
|
{
|
|
// manual decoding due to TAO bug in libcanard generated code
|
|
if (transfer->payload_len < 1 || transfer->payload_len > UAVCAN_EQUIPMENT_ACTUATOR_ARRAYCOMMAND_MAX_SIZE+1) {
|
|
return;
|
|
}
|
|
|
|
const uint8_t data_count = (transfer->payload_len / UAVCAN_EQUIPMENT_ACTUATOR_COMMAND_MAX_SIZE);
|
|
uavcan_equipment_actuator_Command data[data_count] {};
|
|
|
|
uint32_t offset = 0;
|
|
for (uint8_t i=0; i<data_count; i++) {
|
|
canardDecodeScalar(transfer, offset, 8, false, (void*)&data[i].actuator_id);
|
|
offset += 8;
|
|
canardDecodeScalar(transfer, offset, 8, false, (void*)&data[i].command_type);
|
|
offset += 8;
|
|
|
|
#ifndef CANARD_USE_FLOAT16_CAST
|
|
uint16_t tmp_float = 0;
|
|
#else
|
|
CANARD_USE_FLOAT16_CAST tmp_float = 0;
|
|
#endif
|
|
canardDecodeScalar(transfer, offset, 16, false, (void*)&tmp_float);
|
|
offset += 16;
|
|
#ifndef CANARD_USE_FLOAT16_CAST
|
|
data[i].command_value = canardConvertFloat16ToNativeFloat(tmp_float);
|
|
#else
|
|
data[i].command_value = (float)tmp_float;
|
|
#endif
|
|
}
|
|
|
|
for (uint8_t i=0; i < data_count; i++) {
|
|
if (data[i].command_type != UAVCAN_EQUIPMENT_ACTUATOR_COMMAND_COMMAND_TYPE_UNITLESS) {
|
|
// this is the only type we support
|
|
continue;
|
|
}
|
|
periph.rcout_srv(data[i].actuator_id, data[i].command_value);
|
|
}
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_RC_OUT
|
|
|
|
#ifdef HAL_GPIO_PIN_SAFE_LED
|
|
/*
|
|
update safety LED
|
|
*/
|
|
static void can_safety_LED_update(void)
|
|
{
|
|
static uint32_t last_update_ms;
|
|
switch (safety_state) {
|
|
case ARDUPILOT_INDICATION_SAFETYSTATE_STATUS_SAFETY_OFF:
|
|
palWriteLine(HAL_GPIO_PIN_SAFE_LED, SAFE_LED_ON);
|
|
break;
|
|
case ARDUPILOT_INDICATION_SAFETYSTATE_STATUS_SAFETY_ON: {
|
|
uint32_t now = AP_HAL::native_millis();
|
|
if (now - last_update_ms > 100) {
|
|
last_update_ms = now;
|
|
static uint8_t led_counter;
|
|
const uint16_t led_pattern = 0x5500;
|
|
led_counter = (led_counter+1) % 16;
|
|
palWriteLine(HAL_GPIO_PIN_SAFE_LED, (led_pattern & (1U << led_counter))?!SAFE_LED_ON:SAFE_LED_ON);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
palWriteLine(HAL_GPIO_PIN_SAFE_LED, !SAFE_LED_ON);
|
|
break;
|
|
}
|
|
}
|
|
#endif // HAL_GPIO_PIN_SAFE_LED
|
|
|
|
|
|
#ifdef HAL_GPIO_PIN_SAFE_BUTTON
|
|
#ifndef HAL_SAFE_BUTTON_ON
|
|
#define HAL_SAFE_BUTTON_ON 1
|
|
#endif
|
|
/*
|
|
update safety button
|
|
*/
|
|
static void can_safety_button_update(void)
|
|
{
|
|
static uint32_t last_update_ms;
|
|
static uint8_t counter;
|
|
uint32_t now = AP_HAL::native_millis();
|
|
// send at 10Hz when pressed
|
|
if (palReadLine(HAL_GPIO_PIN_SAFE_BUTTON) != HAL_SAFE_BUTTON_ON) {
|
|
counter = 0;
|
|
return;
|
|
}
|
|
if (now - last_update_ms < 100) {
|
|
return;
|
|
}
|
|
if (counter < 255) {
|
|
counter++;
|
|
}
|
|
|
|
last_update_ms = now;
|
|
ardupilot_indication_Button pkt {};
|
|
pkt.button = ARDUPILOT_INDICATION_BUTTON_BUTTON_SAFETY;
|
|
pkt.press_time = counter;
|
|
|
|
uint8_t buffer[ARDUPILOT_INDICATION_BUTTON_MAX_SIZE] {};
|
|
uint16_t total_size = ardupilot_indication_Button_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
ARDUPILOT_INDICATION_BUTTON_SIGNATURE,
|
|
ARDUPILOT_INDICATION_BUTTON_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
#endif // HAL_GPIO_PIN_SAFE_BUTTON
|
|
|
|
/**
|
|
* This callback is invoked by the library when a new message or request or response is received.
|
|
*/
|
|
static void onTransferReceived(CanardInstance* ins,
|
|
CanardRxTransfer* transfer)
|
|
{
|
|
#ifdef HAL_GPIO_PIN_LED_CAN1
|
|
palToggleLine(HAL_GPIO_PIN_LED_CAN1);
|
|
#endif
|
|
|
|
/*
|
|
* Dynamic node ID allocation protocol.
|
|
* Taking this branch only if we don't have a node ID, ignoring otherwise.
|
|
*/
|
|
if (canardGetLocalNodeID(ins) == CANARD_BROADCAST_NODE_ID) {
|
|
if (transfer->transfer_type == CanardTransferTypeBroadcast &&
|
|
transfer->data_type_id == UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_ID) {
|
|
handle_allocation_response(ins, transfer);
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (transfer->data_type_id) {
|
|
case UAVCAN_PROTOCOL_GETNODEINFO_ID:
|
|
handle_get_node_info(ins, transfer);
|
|
break;
|
|
|
|
case UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_ID:
|
|
handle_begin_firmware_update(ins, transfer);
|
|
break;
|
|
|
|
case UAVCAN_PROTOCOL_RESTARTNODE_ID:
|
|
printf("RestartNode\n");
|
|
hal.scheduler->delay(10);
|
|
periph.prepare_reboot();
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
|
|
NVIC_SystemReset();
|
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
HAL_SITL::actually_reboot();
|
|
#endif
|
|
break;
|
|
|
|
case UAVCAN_PROTOCOL_PARAM_GETSET_ID:
|
|
handle_param_getset(ins, transfer);
|
|
break;
|
|
|
|
case UAVCAN_PROTOCOL_PARAM_EXECUTEOPCODE_ID:
|
|
handle_param_executeopcode(ins, transfer);
|
|
break;
|
|
|
|
#if defined(HAL_PERIPH_ENABLE_BUZZER_WITHOUT_NOTIFY) || defined (HAL_PERIPH_ENABLE_NOTIFY)
|
|
case UAVCAN_EQUIPMENT_INDICATION_BEEPCOMMAND_ID:
|
|
handle_beep_command(ins, transfer);
|
|
break;
|
|
#endif
|
|
|
|
#if defined(HAL_GPIO_PIN_SAFE_LED) || defined(HAL_PERIPH_ENABLE_RC_OUT)
|
|
case ARDUPILOT_INDICATION_SAFETYSTATE_ID:
|
|
handle_safety_state(ins, transfer);
|
|
break;
|
|
#endif
|
|
|
|
case UAVCAN_EQUIPMENT_SAFETY_ARMINGSTATUS_ID:
|
|
handle_arming_status(ins, transfer);
|
|
break;
|
|
|
|
#ifdef HAL_PERIPH_ENABLE_GPS
|
|
case UAVCAN_EQUIPMENT_GNSS_RTCMSTREAM_ID:
|
|
handle_RTCMStream(ins, transfer);
|
|
break;
|
|
#endif
|
|
|
|
#if defined(AP_PERIPH_HAVE_LED_WITHOUT_NOTIFY) || defined(HAL_PERIPH_ENABLE_NOTIFY)
|
|
case UAVCAN_EQUIPMENT_INDICATION_LIGHTSCOMMAND_ID:
|
|
handle_lightscommand(ins, transfer);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef HAL_PERIPH_ENABLE_RC_OUT
|
|
case UAVCAN_EQUIPMENT_ESC_RAWCOMMAND_ID:
|
|
handle_esc_rawcommand(ins, transfer);
|
|
break;
|
|
|
|
case UAVCAN_EQUIPMENT_ACTUATOR_ARRAYCOMMAND_ID:
|
|
handle_act_command(ins, transfer);
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* This callback is invoked by the library when it detects beginning of a new transfer on the bus that can be received
|
|
* by the local node.
|
|
* If the callback returns true, the library will receive the transfer.
|
|
* If the callback returns false, the library will ignore the transfer.
|
|
* All transfers that are addressed to other nodes are always ignored.
|
|
*/
|
|
static bool shouldAcceptTransfer(const CanardInstance* ins,
|
|
uint64_t* out_data_type_signature,
|
|
uint16_t data_type_id,
|
|
CanardTransferType transfer_type,
|
|
uint8_t source_node_id)
|
|
{
|
|
(void)source_node_id;
|
|
|
|
if (canardGetLocalNodeID(ins) == CANARD_BROADCAST_NODE_ID)
|
|
{
|
|
/*
|
|
* If we're in the process of allocation of dynamic node ID, accept only relevant transfers.
|
|
*/
|
|
if ((transfer_type == CanardTransferTypeBroadcast) &&
|
|
(data_type_id == UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_ID))
|
|
{
|
|
*out_data_type_signature = UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_SIGNATURE;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
switch (data_type_id) {
|
|
case UAVCAN_PROTOCOL_GETNODEINFO_ID:
|
|
*out_data_type_signature = UAVCAN_PROTOCOL_GETNODEINFO_SIGNATURE;
|
|
return true;
|
|
case UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_ID:
|
|
*out_data_type_signature = UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_SIGNATURE;
|
|
return true;
|
|
case UAVCAN_PROTOCOL_RESTARTNODE_ID:
|
|
*out_data_type_signature = UAVCAN_PROTOCOL_RESTARTNODE_SIGNATURE;
|
|
return true;
|
|
case UAVCAN_PROTOCOL_PARAM_GETSET_ID:
|
|
*out_data_type_signature = UAVCAN_PROTOCOL_PARAM_GETSET_SIGNATURE;
|
|
return true;
|
|
case UAVCAN_PROTOCOL_PARAM_EXECUTEOPCODE_ID:
|
|
*out_data_type_signature = UAVCAN_PROTOCOL_PARAM_EXECUTEOPCODE_SIGNATURE;
|
|
return true;
|
|
#if defined(HAL_PERIPH_ENABLE_BUZZER_WITHOUT_NOTIFY) || defined (HAL_PERIPH_ENABLE_NOTIFY)
|
|
case UAVCAN_EQUIPMENT_INDICATION_BEEPCOMMAND_ID:
|
|
*out_data_type_signature = UAVCAN_EQUIPMENT_INDICATION_BEEPCOMMAND_SIGNATURE;
|
|
return true;
|
|
#endif
|
|
#if defined(HAL_GPIO_PIN_SAFE_LED) || defined(HAL_PERIPH_ENABLE_RC_OUT)
|
|
case ARDUPILOT_INDICATION_SAFETYSTATE_ID:
|
|
*out_data_type_signature = ARDUPILOT_INDICATION_SAFETYSTATE_SIGNATURE;
|
|
return true;
|
|
#endif
|
|
case UAVCAN_EQUIPMENT_SAFETY_ARMINGSTATUS_ID:
|
|
*out_data_type_signature = UAVCAN_EQUIPMENT_SAFETY_ARMINGSTATUS_SIGNATURE;
|
|
return true;
|
|
#if defined(AP_PERIPH_HAVE_LED_WITHOUT_NOTIFY) || defined(HAL_PERIPH_ENABLE_NOTIFY)
|
|
case UAVCAN_EQUIPMENT_INDICATION_LIGHTSCOMMAND_ID:
|
|
*out_data_type_signature = UAVCAN_EQUIPMENT_INDICATION_LIGHTSCOMMAND_SIGNATURE;
|
|
return true;
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_GPS
|
|
case UAVCAN_EQUIPMENT_GNSS_RTCMSTREAM_ID:
|
|
*out_data_type_signature = UAVCAN_EQUIPMENT_GNSS_RTCMSTREAM_SIGNATURE;
|
|
return true;
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_RC_OUT
|
|
case UAVCAN_EQUIPMENT_ESC_RAWCOMMAND_ID:
|
|
*out_data_type_signature = UAVCAN_EQUIPMENT_ESC_RAWCOMMAND_SIGNATURE;
|
|
return true;
|
|
|
|
case UAVCAN_EQUIPMENT_ACTUATOR_ARRAYCOMMAND_ID:
|
|
*out_data_type_signature = UAVCAN_EQUIPMENT_ACTUATOR_ARRAYCOMMAND_SIGNATURE;
|
|
return true;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void processTx(void)
|
|
{
|
|
static uint8_t fail_count;
|
|
for (const CanardCANFrame* txf = NULL; (txf = canardPeekTxQueue(&canard)) != NULL;) {
|
|
AP_HAL::CANFrame txmsg {};
|
|
txmsg.dlc = txf->data_len;
|
|
memcpy(txmsg.data, txf->data, 8);
|
|
txmsg.id = (txf->id | AP_HAL::CANFrame::FlagEFF);
|
|
// push message with 1s timeout
|
|
bool sent_ok = false;
|
|
const uint64_t deadline = AP_HAL::native_micros64() + 1000000;
|
|
for (uint8_t i=0; i<HAL_NUM_CAN_IFACES; i++) {
|
|
sent_ok |= (can_iface[i].send(txmsg, deadline, 0) > 0);
|
|
}
|
|
if (sent_ok) {
|
|
canardPopTxQueue(&canard);
|
|
fail_count = 0;
|
|
} else {
|
|
// just exit and try again later. If we fail 8 times in a row
|
|
// then start discarding to prevent the pool filling up
|
|
if (fail_count < 8) {
|
|
fail_count++;
|
|
} else {
|
|
canardPopTxQueue(&canard);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void processRx(void)
|
|
{
|
|
AP_HAL::CANFrame rxmsg;
|
|
while (true) {
|
|
bool got_pkt = false;
|
|
for (uint8_t i=0; i<HAL_NUM_CAN_IFACES; i++) {
|
|
bool read_select = true;
|
|
bool write_select = false;
|
|
can_iface[i].select(read_select, write_select, nullptr, 0);
|
|
if (!read_select) {
|
|
continue;
|
|
}
|
|
CanardCANFrame rx_frame {};
|
|
|
|
//palToggleLine(HAL_GPIO_PIN_LED);
|
|
uint64_t timestamp;
|
|
AP_HAL::CANIface::CanIOFlags flags;
|
|
can_iface[i].receive(rxmsg, timestamp, flags);
|
|
memcpy(rx_frame.data, rxmsg.data, 8);
|
|
rx_frame.data_len = rxmsg.dlc;
|
|
rx_frame.id = rxmsg.id;
|
|
canardHandleRxFrame(&canard, &rx_frame, timestamp);
|
|
got_pkt = true;
|
|
}
|
|
if (!got_pkt) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint16_t pool_peak_percent(void)
|
|
{
|
|
const CanardPoolAllocatorStatistics stats = canardGetPoolAllocatorStatistics(&canard);
|
|
const uint16_t peak_percent = (uint16_t)(100U * stats.peak_usage_blocks / stats.capacity_blocks);
|
|
return peak_percent;
|
|
}
|
|
|
|
static void node_status_send(void)
|
|
{
|
|
uint8_t buffer[UAVCAN_PROTOCOL_NODESTATUS_MAX_SIZE];
|
|
node_status.uptime_sec = AP_HAL::millis() / 1000U;
|
|
|
|
node_status.vendor_specific_status_code = hal.util->available_memory();
|
|
|
|
uint32_t len = uavcan_protocol_NodeStatus_encode(&node_status, buffer);
|
|
|
|
const int16_t bc_res = canardBroadcast(&canard,
|
|
UAVCAN_PROTOCOL_NODESTATUS_SIGNATURE,
|
|
UAVCAN_PROTOCOL_NODESTATUS_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
buffer,
|
|
len);
|
|
if (bc_res <= 0) {
|
|
printf("broadcast fail %d\n", bc_res);
|
|
} else {
|
|
//printf("broadcast node status OK\n");
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* This function is called at 1 Hz rate from the main loop.
|
|
*/
|
|
static void process1HzTasks(uint64_t timestamp_usec)
|
|
{
|
|
/*
|
|
* Purging transfers that are no longer transmitted. This will occasionally free up some memory.
|
|
*/
|
|
canardCleanupStaleTransfers(&canard, timestamp_usec);
|
|
|
|
/*
|
|
* Printing the memory usage statistics.
|
|
*/
|
|
{
|
|
/*
|
|
* The recommended way to establish the minimal size of the memory pool is to stress-test the application and
|
|
* record the worst case memory usage.
|
|
*/
|
|
if (pool_peak_percent() > 70) {
|
|
printf("WARNING: ENLARGE MEMORY POOL\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transmitting the node status message periodically.
|
|
*/
|
|
node_status_send();
|
|
|
|
#if !defined(HAL_NO_FLASH_SUPPORT) && !defined(HAL_NO_ROMFS_SUPPORT)
|
|
if (periph.g.flash_bootloader.get()) {
|
|
const uint8_t flash_bl = periph.g.flash_bootloader.get();
|
|
periph.g.flash_bootloader.set_and_save_ifchanged(0);
|
|
if (flash_bl == 42) {
|
|
// magic developer value to test watchdog support with main loop lockup
|
|
while (true) {
|
|
can_printf("entering lockup\n");
|
|
hal.scheduler->delay(100);
|
|
}
|
|
}
|
|
if (flash_bl == 43) {
|
|
// magic developer value to test watchdog support with hard fault
|
|
can_printf("entering fault\n");
|
|
void *foo = (void*)0xE000ED38;
|
|
typedef void (*fptr)();
|
|
fptr gptr = (fptr) (void *) foo;
|
|
gptr();
|
|
}
|
|
EXPECT_DELAY_MS(2000);
|
|
hal.scheduler->delay(1000);
|
|
AP_HAL::Util::FlashBootloader res = hal.util->flash_bootloader();
|
|
switch (res) {
|
|
case AP_HAL::Util::FlashBootloader::OK:
|
|
can_printf("Flash bootloader OK\n");
|
|
break;
|
|
case AP_HAL::Util::FlashBootloader::NO_CHANGE:
|
|
can_printf("Bootloader unchanged\n");
|
|
break;
|
|
default:
|
|
can_printf("Flash bootloader FAILED\n");
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
node_status.mode = UAVCAN_PROTOCOL_NODESTATUS_MODE_OPERATIONAL;
|
|
|
|
#if 0
|
|
// test code for watchdog reset
|
|
if (AP_HAL::native_millis() > 15000) {
|
|
while (true) ;
|
|
}
|
|
#endif
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
|
|
if (AP_HAL::native_millis() > 30000) {
|
|
// use RTC to mark that we have been running fine for
|
|
// 30s. This is used along with watchdog resets to ensure the
|
|
// user has a chance to load a fixed firmware
|
|
set_fast_reboot(RTC_BOOT_FWOK);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
wait for dynamic allocation of node ID
|
|
*/
|
|
static void can_wait_node_id(void)
|
|
{
|
|
uint8_t node_id_allocation_transfer_id = 0;
|
|
const uint32_t led_pattern = 0xAAAA;
|
|
uint8_t led_idx = 0;
|
|
uint32_t last_led_change = AP_HAL::native_millis();
|
|
const uint32_t led_change_period = 50;
|
|
|
|
while (canardGetLocalNodeID(&canard) == CANARD_BROADCAST_NODE_ID)
|
|
{
|
|
printf("Waiting for dynamic node ID allocation... (pool %u)\n", pool_peak_percent());
|
|
|
|
stm32_watchdog_pat();
|
|
uint32_t now = AP_HAL::native_millis();
|
|
|
|
send_next_node_id_allocation_request_at_ms =
|
|
now + UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MIN_REQUEST_PERIOD_MS +
|
|
get_random_range(UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MAX_FOLLOWUP_DELAY_MS);
|
|
|
|
while (((now=AP_HAL::native_millis()) < send_next_node_id_allocation_request_at_ms) &&
|
|
(canardGetLocalNodeID(&canard) == CANARD_BROADCAST_NODE_ID))
|
|
{
|
|
processTx();
|
|
processRx();
|
|
canardCleanupStaleTransfers(&canard, AP_HAL::native_micros64());
|
|
stm32_watchdog_pat();
|
|
|
|
if (now - last_led_change > led_change_period) {
|
|
// blink LED in recognisable pattern while waiting for DNA
|
|
#ifdef HAL_GPIO_PIN_LED
|
|
palWriteLine(HAL_GPIO_PIN_LED, (led_pattern & (1U<<led_idx))?1:0);
|
|
#else
|
|
(void)led_pattern;
|
|
(void)led_idx;
|
|
#endif
|
|
led_idx = (led_idx+1) % 32;
|
|
last_led_change = now;
|
|
}
|
|
}
|
|
|
|
|
|
if (canardGetLocalNodeID(&canard) != CANARD_BROADCAST_NODE_ID)
|
|
{
|
|
break;
|
|
}
|
|
|
|
// Structure of the request is documented in the DSDL definition
|
|
// See http://uavcan.org/Specification/6._Application_level_functions/#dynamic-node-id-allocation
|
|
uint8_t allocation_request[CANARD_CAN_FRAME_MAX_DATA_LEN - 1];
|
|
allocation_request[0] = (uint8_t)(PreferredNodeID << 1U);
|
|
|
|
if (node_id_allocation_unique_id_offset == 0)
|
|
{
|
|
allocation_request[0] |= 1; // First part of unique ID
|
|
}
|
|
|
|
uint8_t my_unique_id[UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_UNIQUE_ID_MAX_LENGTH];
|
|
readUniqueID(my_unique_id);
|
|
|
|
static const uint8_t MaxLenOfUniqueIDInRequest = 6;
|
|
uint8_t uid_size = (uint8_t)(UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_UNIQUE_ID_MAX_LENGTH - node_id_allocation_unique_id_offset);
|
|
if (uid_size > MaxLenOfUniqueIDInRequest)
|
|
{
|
|
uid_size = MaxLenOfUniqueIDInRequest;
|
|
}
|
|
|
|
memmove(&allocation_request[1], &my_unique_id[node_id_allocation_unique_id_offset], uid_size);
|
|
|
|
// Broadcasting the request
|
|
const int16_t bcast_res = canardBroadcast(&canard,
|
|
UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_SIGNATURE,
|
|
UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_ID,
|
|
&node_id_allocation_transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&allocation_request[0],
|
|
(uint16_t) (uid_size + 1));
|
|
if (bcast_res < 0)
|
|
{
|
|
printf("Could not broadcast ID allocation req; error %d\n", bcast_res);
|
|
}
|
|
|
|
// Preparing for timeout; if response is received, this value will be updated from the callback.
|
|
node_id_allocation_unique_id_offset = 0;
|
|
}
|
|
|
|
printf("Dynamic node ID allocation complete [%d]\n", canardGetLocalNodeID(&canard));
|
|
}
|
|
|
|
void AP_Periph_FW::can_start()
|
|
{
|
|
node_status.health = UAVCAN_PROTOCOL_NODESTATUS_HEALTH_OK;
|
|
node_status.mode = UAVCAN_PROTOCOL_NODESTATUS_MODE_INITIALIZATION;
|
|
node_status.uptime_sec = AP_HAL::native_millis() / 1000U;
|
|
|
|
if (g.can_node >= 0 && g.can_node < 128) {
|
|
PreferredNodeID = g.can_node;
|
|
}
|
|
|
|
#if !defined(HAL_NO_FLASH_SUPPORT) && !defined(HAL_NO_ROMFS_SUPPORT)
|
|
periph.g.flash_bootloader.set_and_save_ifchanged(0);
|
|
#endif
|
|
|
|
for (int8_t i=0; i<HAL_NUM_CAN_IFACES; i++) {
|
|
can_iface[i].init(1000000, AP_HAL::CANIface::NormalMode);
|
|
}
|
|
|
|
canardInit(&canard, (uint8_t *)canard_memory_pool, sizeof(canard_memory_pool),
|
|
onTransferReceived, shouldAcceptTransfer, NULL);
|
|
|
|
if (PreferredNodeID != CANARD_BROADCAST_NODE_ID) {
|
|
canardSetLocalNodeID(&canard, PreferredNodeID);
|
|
}
|
|
|
|
// wait for dynamic node ID allocation
|
|
can_wait_node_id();
|
|
}
|
|
|
|
#ifdef HAL_PERIPH_ENABLE_PWM_HARDPOINT
|
|
void AP_Periph_FW::pwm_hardpoint_init()
|
|
{
|
|
hal.gpio->attach_interrupt(
|
|
PWM_HARDPOINT_PIN,
|
|
FUNCTOR_BIND_MEMBER(&AP_Periph_FW::pwm_irq_handler, void, uint8_t, bool, uint32_t), AP_HAL::GPIO::INTERRUPT_BOTH);
|
|
|
|
}
|
|
|
|
/*
|
|
called on PWM pin transition
|
|
*/
|
|
void AP_Periph_FW::pwm_irq_handler(uint8_t pin, bool pin_state, uint32_t timestamp)
|
|
{
|
|
if (pin_state == 0 && pwm_hardpoint.last_state == 1 && pwm_hardpoint.last_ts_us != 0) {
|
|
uint32_t width = timestamp - pwm_hardpoint.last_ts_us;
|
|
if (width > 500 && width < 2500) {
|
|
pwm_hardpoint.pwm_value = width;
|
|
if (width > pwm_hardpoint.highest_pwm) {
|
|
pwm_hardpoint.highest_pwm = width;
|
|
}
|
|
}
|
|
}
|
|
pwm_hardpoint.last_state = pin_state;
|
|
pwm_hardpoint.last_ts_us = timestamp;
|
|
}
|
|
|
|
void AP_Periph_FW::pwm_hardpoint_update()
|
|
{
|
|
uint32_t now = AP_HAL::native_millis();
|
|
// send at 10Hz
|
|
void *save = hal.scheduler->disable_interrupts_save();
|
|
uint16_t value = pwm_hardpoint.highest_pwm;
|
|
pwm_hardpoint.highest_pwm = 0;
|
|
hal.scheduler->restore_interrupts(save);
|
|
float rate = g.hardpoint_rate;
|
|
rate = constrain_float(rate, 10, 100);
|
|
if (value > 0 && now - pwm_hardpoint.last_send_ms >= 1000U/rate) {
|
|
pwm_hardpoint.last_send_ms = now;
|
|
uavcan_equipment_hardpoint_Command cmd {};
|
|
cmd.hardpoint_id = g.hardpoint_id;
|
|
cmd.command = value;
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_HARDPOINT_COMMAND_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_hardpoint_Command_encode(&cmd, buffer);
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_HARDPOINT_COMMAND_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_HARDPOINT_COMMAND_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_PWM_HARDPOINT
|
|
|
|
#ifdef HAL_PERIPH_ENABLE_HWESC
|
|
void AP_Periph_FW::hwesc_telem_update()
|
|
{
|
|
if (!hwesc_telem.update()) {
|
|
return;
|
|
}
|
|
const HWESC_Telem::HWESC &t = hwesc_telem.get_telem();
|
|
|
|
uavcan_equipment_esc_Status pkt {};
|
|
pkt.esc_index = g.esc_number;
|
|
pkt.voltage = t.voltage;
|
|
pkt.current = t.current;
|
|
pkt.temperature = MAX(t.mos_temperature, t.cap_temperature);
|
|
pkt.rpm = t.rpm;
|
|
pkt.power_rating_pct = t.phase_current;
|
|
pkt.error_count = t.error_count;
|
|
|
|
fix_float16(pkt.voltage);
|
|
fix_float16(pkt.current);
|
|
fix_float16(pkt.temperature);
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_ESC_STATUS_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_esc_Status_encode(&pkt, buffer);
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_ESC_STATUS_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_ESC_STATUS_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_HWESC
|
|
|
|
|
|
void AP_Periph_FW::can_update()
|
|
{
|
|
static uint32_t last_1Hz_ms;
|
|
uint32_t now = AP_HAL::native_millis();
|
|
if (now - last_1Hz_ms >= 1000) {
|
|
last_1Hz_ms = now;
|
|
process1HzTasks(AP_HAL::native_micros64());
|
|
}
|
|
can_mag_update();
|
|
can_gps_update();
|
|
can_battery_update();
|
|
can_baro_update();
|
|
can_airspeed_update();
|
|
can_rangefinder_update();
|
|
#if defined(HAL_PERIPH_ENABLE_BUZZER_WITHOUT_NOTIFY) || defined (HAL_PERIPH_ENABLE_NOTIFY)
|
|
can_buzzer_update();
|
|
#endif
|
|
#ifdef HAL_GPIO_PIN_SAFE_LED
|
|
can_safety_LED_update();
|
|
#endif
|
|
#ifdef HAL_GPIO_PIN_SAFE_BUTTON
|
|
can_safety_button_update();
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_PWM_HARDPOINT
|
|
pwm_hardpoint_update();
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_HWESC
|
|
hwesc_telem_update();
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_MSP
|
|
msp_sensor_update();
|
|
#endif
|
|
#ifdef HAL_PERIPH_ENABLE_RC_OUT
|
|
rcout_update();
|
|
#endif
|
|
processTx();
|
|
processRx();
|
|
}
|
|
|
|
/*
|
|
update CAN magnetometer
|
|
*/
|
|
void AP_Periph_FW::can_mag_update(void)
|
|
{
|
|
#ifdef HAL_PERIPH_ENABLE_MAG
|
|
if (!compass.enabled()) {
|
|
return;
|
|
}
|
|
compass.read();
|
|
#if CAN_PROBE_CONTINUOUS
|
|
if (compass.get_count() == 0) {
|
|
static uint32_t last_probe_ms;
|
|
uint32_t now = AP_HAL::native_millis();
|
|
if (now - last_probe_ms >= 1000) {
|
|
last_probe_ms = now;
|
|
compass.init();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (last_mag_update_ms == compass.last_update_ms()) {
|
|
return;
|
|
}
|
|
if (!compass.healthy()) {
|
|
return;
|
|
}
|
|
|
|
last_mag_update_ms = compass.last_update_ms();
|
|
const Vector3f &field = compass.get_field();
|
|
uavcan_equipment_ahrs_MagneticFieldStrength pkt {};
|
|
|
|
// the canard dsdl compiler doesn't understand float16
|
|
for (uint8_t i=0; i<3; i++) {
|
|
pkt.magnetic_field_ga[i] = field[i] * 0.001;
|
|
fix_float16(pkt.magnetic_field_ga[i]);
|
|
}
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_AHRS_MAGNETICFIELDSTRENGTH_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_ahrs_MagneticFieldStrength_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_AHRS_MAGNETICFIELDSTRENGTH_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_AHRS_MAGNETICFIELDSTRENGTH_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
#endif // HAL_PERIPH_ENABLE_MAG
|
|
}
|
|
|
|
/*
|
|
update CAN battery monitor
|
|
*/
|
|
void AP_Periph_FW::can_battery_update(void)
|
|
{
|
|
#ifdef HAL_PERIPH_ENABLE_BATTERY
|
|
const uint32_t now_ms = AP_HAL::native_millis();
|
|
if (now_ms - battery.last_can_send_ms < 100) {
|
|
return;
|
|
}
|
|
battery.last_can_send_ms = now_ms;
|
|
|
|
const uint8_t battery_instances = battery.lib.num_instances();
|
|
for (uint8_t i=0; i<battery_instances; i++) {
|
|
if (!battery.lib.healthy(i)) {
|
|
continue;
|
|
}
|
|
|
|
uavcan_equipment_power_BatteryInfo pkt {};
|
|
|
|
// if a battery serial number is assigned, use that as the ID. Else, use the index.
|
|
const int32_t serial_number = battery.lib.get_serial_number(i);
|
|
pkt.battery_id = (serial_number >= 0) ? serial_number : i+1;
|
|
|
|
pkt.voltage = battery.lib.voltage(i);
|
|
|
|
float current;
|
|
if (battery.lib.current_amps(current, i)) {
|
|
pkt.current = current;
|
|
}
|
|
float temperature;
|
|
if (battery.lib.get_temperature(temperature, i)) {
|
|
pkt.temperature = temperature;
|
|
}
|
|
|
|
fix_float16(pkt.voltage);
|
|
fix_float16(pkt.current);
|
|
fix_float16(pkt.temperature);
|
|
|
|
pkt.state_of_health_pct = UAVCAN_EQUIPMENT_POWER_BATTERYINFO_STATE_OF_HEALTH_UNKNOWN;
|
|
pkt.state_of_charge_pct = battery.lib.capacity_remaining_pct(i);
|
|
pkt.model_instance_id = i+1;
|
|
|
|
#if !defined(HAL_PERIPH_BATTERY_SKIP_NAME)
|
|
// example model_name: "org.ardupilot.ap_periph SN 123"
|
|
char text[UAVCAN_EQUIPMENT_POWER_BATTERYINFO_MODEL_NAME_MAX_LENGTH+1] {};
|
|
hal.util->snprintf(text, sizeof(text), "%s %d", AP_PERIPH_BATTERY_MODEL_NAME, serial_number);
|
|
pkt.model_name.len = strlen(text);
|
|
pkt.model_name.data = (uint8_t *)text;
|
|
#endif //defined(HAL_PERIPH_BATTERY_SKIP_NAME)
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_POWER_BATTERYINFO_MAX_SIZE] {};
|
|
const uint16_t total_size = uavcan_equipment_power_BatteryInfo_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_POWER_BATTERYINFO_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_POWER_BATTERYINFO_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
update CAN GPS
|
|
*/
|
|
void AP_Periph_FW::can_gps_update(void)
|
|
{
|
|
#ifdef HAL_PERIPH_ENABLE_GPS
|
|
if (gps.get_type(0) == AP_GPS::GPS_Type::GPS_TYPE_NONE) {
|
|
return;
|
|
}
|
|
gps.update();
|
|
if (last_gps_update_ms == gps.last_message_time_ms()) {
|
|
return;
|
|
}
|
|
last_gps_update_ms = gps.last_message_time_ms();
|
|
|
|
{
|
|
/*
|
|
send Fix packet
|
|
*/
|
|
uavcan_equipment_gnss_Fix pkt {};
|
|
const Location &loc = gps.location();
|
|
const Vector3f &vel = gps.velocity();
|
|
|
|
pkt.timestamp.usec = AP_HAL::native_micros64();
|
|
pkt.gnss_timestamp.usec = gps.time_epoch_usec();
|
|
if (pkt.gnss_timestamp.usec == 0) {
|
|
pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX_GNSS_TIME_STANDARD_NONE;
|
|
} else {
|
|
pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX_GNSS_TIME_STANDARD_UTC;
|
|
}
|
|
pkt.longitude_deg_1e8 = uint64_t(loc.lng) * 10ULL;
|
|
pkt.latitude_deg_1e8 = uint64_t(loc.lat) * 10ULL;
|
|
pkt.height_ellipsoid_mm = loc.alt * 10;
|
|
pkt.height_msl_mm = loc.alt * 10;
|
|
for (uint8_t i=0; i<3; i++) {
|
|
// the canard dsdl compiler doesn't understand float16
|
|
pkt.ned_velocity[i] = vel[i];
|
|
fix_float16(pkt.ned_velocity[i]);
|
|
}
|
|
pkt.sats_used = gps.num_sats();
|
|
switch (gps.status()) {
|
|
case AP_GPS::GPS_Status::NO_GPS:
|
|
case AP_GPS::GPS_Status::NO_FIX:
|
|
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX_STATUS_NO_FIX;
|
|
break;
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_2D:
|
|
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX_STATUS_2D_FIX;
|
|
break;
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_3D:
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_3D_DGPS:
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FLOAT:
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FIXED:
|
|
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX_STATUS_3D_FIX;
|
|
break;
|
|
}
|
|
|
|
float pos_cov[9] {};
|
|
pkt.position_covariance.data = &pos_cov[0];
|
|
pkt.position_covariance.len = 9;
|
|
|
|
float vacc;
|
|
if (gps.vertical_accuracy(vacc)) {
|
|
pos_cov[8] = sq(vacc);
|
|
fix_float16(pos_cov[8]);
|
|
}
|
|
|
|
float hacc;
|
|
if (gps.horizontal_accuracy(hacc)) {
|
|
pos_cov[0] = pos_cov[4] = sq(hacc);
|
|
fix_float16(pos_cov[0]);
|
|
fix_float16(pos_cov[4]);
|
|
}
|
|
|
|
float vel_cov[9] {};
|
|
pkt.velocity_covariance.data = &pos_cov[0];
|
|
pkt.velocity_covariance.len = 9;
|
|
|
|
float sacc;
|
|
if (gps.speed_accuracy(sacc)) {
|
|
float vc3 = sq(sacc);
|
|
vel_cov[0] = vel_cov[4] = vel_cov[8] = vc3;
|
|
fix_float16(vel_cov[0]);
|
|
fix_float16(vel_cov[4]);
|
|
fix_float16(vel_cov[8]);
|
|
}
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_GNSS_FIX_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_gnss_Fix_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_GNSS_FIX_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_GNSS_FIX_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
|
|
{
|
|
/*
|
|
send Fix2 packet
|
|
*/
|
|
uavcan_equipment_gnss_Fix2 pkt {};
|
|
const Location &loc = gps.location();
|
|
const Vector3f &vel = gps.velocity();
|
|
|
|
pkt.timestamp.usec = AP_HAL::native_micros64();
|
|
pkt.gnss_timestamp.usec = gps.time_epoch_usec();
|
|
if (pkt.gnss_timestamp.usec == 0) {
|
|
pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX_GNSS_TIME_STANDARD_NONE;
|
|
} else {
|
|
pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX_GNSS_TIME_STANDARD_UTC;
|
|
}
|
|
pkt.longitude_deg_1e8 = uint64_t(loc.lng) * 10ULL;
|
|
pkt.latitude_deg_1e8 = uint64_t(loc.lat) * 10ULL;
|
|
pkt.height_ellipsoid_mm = loc.alt * 10;
|
|
pkt.height_msl_mm = loc.alt * 10;
|
|
for (uint8_t i=0; i<3; i++) {
|
|
pkt.ned_velocity[i] = vel[i];
|
|
}
|
|
pkt.sats_used = gps.num_sats();
|
|
switch (gps.status()) {
|
|
case AP_GPS::GPS_Status::NO_GPS:
|
|
case AP_GPS::GPS_Status::NO_FIX:
|
|
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_NO_FIX;
|
|
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_SINGLE;
|
|
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_DGPS_OTHER;
|
|
break;
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_2D:
|
|
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_2D_FIX;
|
|
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_SINGLE;
|
|
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_DGPS_OTHER;
|
|
break;
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_3D:
|
|
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX;
|
|
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_SINGLE;
|
|
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_DGPS_OTHER;
|
|
break;
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_3D_DGPS:
|
|
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX;
|
|
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_DGPS;
|
|
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_DGPS_SBAS;
|
|
break;
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FLOAT:
|
|
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX;
|
|
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_RTK;
|
|
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_RTK_FLOAT;
|
|
break;
|
|
case AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FIXED:
|
|
pkt.status = UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX;
|
|
pkt.mode = UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_RTK;
|
|
pkt.sub_mode = UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_RTK_FIXED;
|
|
break;
|
|
}
|
|
|
|
float cov[6] {};
|
|
pkt.covariance.data = &cov[0];
|
|
pkt.covariance.len = 6;
|
|
|
|
float hacc;
|
|
if (gps.horizontal_accuracy(hacc)) {
|
|
cov[0] = cov[1] = sq(hacc);
|
|
}
|
|
|
|
float vacc;
|
|
if (gps.vertical_accuracy(vacc)) {
|
|
cov[2] = sq(vacc);
|
|
}
|
|
|
|
float sacc;
|
|
if (gps.speed_accuracy(sacc)) {
|
|
float vc3 = sq(sacc);
|
|
cov[3] = cov[4] = cov[5] = vc3;
|
|
}
|
|
|
|
for (uint8_t i=0; i<6; i++) {
|
|
fix_float16(cov[i]);
|
|
}
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_GNSS_FIX2_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_gnss_Fix2_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_GNSS_FIX2_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_GNSS_FIX2_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
|
|
/*
|
|
send aux packet
|
|
*/
|
|
{
|
|
uavcan_equipment_gnss_Auxiliary aux {};
|
|
aux.hdop = gps.get_hdop() * 0.01;
|
|
aux.vdop = gps.get_vdop() * 0.01;
|
|
fix_float16(aux.hdop);
|
|
fix_float16(aux.vdop);
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_GNSS_AUXILIARY_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_gnss_Auxiliary_encode(&aux, buffer);
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_GNSS_AUXILIARY_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_GNSS_AUXILIARY_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
|
|
// send the gnss status packet
|
|
{
|
|
ardupilot_gnss_Status status {};
|
|
|
|
status.healthy = gps.is_healthy();
|
|
if (gps.logging_present() && gps.logging_enabled() && !gps.logging_failed()) {
|
|
status.status |= ARDUPILOT_GNSS_STATUS_STATUS_LOGGING;
|
|
}
|
|
uint8_t idx; // unused
|
|
if (status.healthy && !gps.first_unconfigured_gps(idx)) {
|
|
status.status |= ARDUPILOT_GNSS_STATUS_STATUS_ARMABLE;
|
|
}
|
|
|
|
uint32_t error_codes;
|
|
if (gps.get_error_codes(error_codes)) {
|
|
status.error_codes = error_codes;
|
|
}
|
|
|
|
uint8_t buffer[ARDUPILOT_GNSS_STATUS_MAX_SIZE] {};
|
|
const uint16_t total_size = ardupilot_gnss_Status_encode(&status, buffer);
|
|
canardBroadcast(&canard,
|
|
ARDUPILOT_GNSS_STATUS_SIGNATURE,
|
|
ARDUPILOT_GNSS_STATUS_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_GPS
|
|
}
|
|
|
|
/*
|
|
update CAN baro
|
|
*/
|
|
void AP_Periph_FW::can_baro_update(void)
|
|
{
|
|
#ifdef HAL_PERIPH_ENABLE_BARO
|
|
if (!periph.g.baro_enable) {
|
|
return;
|
|
}
|
|
baro.update();
|
|
if (last_baro_update_ms == baro.get_last_update()) {
|
|
return;
|
|
}
|
|
|
|
last_baro_update_ms = baro.get_last_update();
|
|
if (!baro.healthy()) {
|
|
// don't send any data
|
|
return;
|
|
}
|
|
const float press = baro.get_pressure();
|
|
const float temp = baro.get_temperature();
|
|
|
|
{
|
|
uavcan_equipment_air_data_StaticPressure pkt {};
|
|
pkt.static_pressure = press;
|
|
pkt.static_pressure_variance = 0; // should we make this a parameter?
|
|
fix_float16(pkt.static_pressure_variance);
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_AIR_DATA_STATICPRESSURE_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_air_data_StaticPressure_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_AIR_DATA_STATICPRESSURE_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_AIR_DATA_STATICPRESSURE_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
|
|
{
|
|
uavcan_equipment_air_data_StaticTemperature pkt {};
|
|
pkt.static_temperature = temp + C_TO_KELVIN;
|
|
pkt.static_temperature_variance = 0; // should we make this a parameter?
|
|
|
|
fix_float16(pkt.static_temperature);
|
|
fix_float16(pkt.static_temperature_variance);
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_AIR_DATA_STATICTEMPERATURE_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_air_data_StaticTemperature_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_AIR_DATA_STATICTEMPERATURE_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_AIR_DATA_STATICTEMPERATURE_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_BARO
|
|
}
|
|
|
|
|
|
/*
|
|
update CAN airspeed
|
|
*/
|
|
void AP_Periph_FW::can_airspeed_update(void)
|
|
{
|
|
#ifdef HAL_PERIPH_ENABLE_AIRSPEED
|
|
if (!airspeed.enabled()) {
|
|
return;
|
|
}
|
|
#if CAN_PROBE_CONTINUOUS
|
|
if (!airspeed.healthy()) {
|
|
uint32_t now = AP_HAL::native_millis();
|
|
static uint32_t last_probe_ms;
|
|
if (now - last_probe_ms >= 1000) {
|
|
last_probe_ms = now;
|
|
airspeed.init();
|
|
}
|
|
}
|
|
#endif
|
|
uint32_t now = AP_HAL::native_millis();
|
|
if (now - last_airspeed_update_ms < 50) {
|
|
// max 20Hz data
|
|
return;
|
|
}
|
|
last_airspeed_update_ms = now;
|
|
airspeed.update(false);
|
|
if (!airspeed.healthy()) {
|
|
// don't send any data
|
|
return;
|
|
}
|
|
const float press = airspeed.get_corrected_pressure();
|
|
float temp;
|
|
if (!airspeed.get_temperature(temp)) {
|
|
temp = nanf("");
|
|
} else {
|
|
temp += C_TO_KELVIN;
|
|
}
|
|
|
|
uavcan_equipment_air_data_RawAirData pkt {};
|
|
pkt.differential_pressure = press;
|
|
pkt.static_air_temperature = temp;
|
|
fix_float16(pkt.differential_pressure);
|
|
fix_float16(pkt.static_air_temperature);
|
|
|
|
// unfilled elements are NaN
|
|
pkt.static_pressure = nanf("");
|
|
pkt.static_pressure_sensor_temperature = nanf("");
|
|
pkt.differential_pressure_sensor_temperature = nanf("");
|
|
pkt.pitot_temperature = nanf("");
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_AIR_DATA_RAWAIRDATA_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_air_data_RawAirData_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_AIR_DATA_RAWAIRDATA_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_AIR_DATA_RAWAIRDATA_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
#endif // HAL_PERIPH_ENABLE_AIRSPEED
|
|
}
|
|
|
|
|
|
/*
|
|
update CAN rangefinder
|
|
*/
|
|
void AP_Periph_FW::can_rangefinder_update(void)
|
|
{
|
|
#ifdef HAL_PERIPH_ENABLE_RANGEFINDER
|
|
if (rangefinder.get_type(0) == RangeFinder::Type::NONE) {
|
|
return;
|
|
}
|
|
#if CAN_PROBE_CONTINUOUS
|
|
if (rangefinder.num_sensors() == 0) {
|
|
uint32_t now = AP_HAL::native_millis();
|
|
static uint32_t last_probe_ms;
|
|
if (now - last_probe_ms >= 1000) {
|
|
last_probe_ms = now;
|
|
rangefinder.init(ROTATION_NONE);
|
|
}
|
|
}
|
|
#endif
|
|
uint32_t now = AP_HAL::native_millis();
|
|
static uint32_t last_update_ms;
|
|
if (now - last_update_ms < 20) {
|
|
// max 50Hz data
|
|
return;
|
|
}
|
|
last_update_ms = now;
|
|
rangefinder.update();
|
|
RangeFinder::Status status = rangefinder.status_orient(ROTATION_NONE);
|
|
if (status <= RangeFinder::Status::NoData) {
|
|
// don't send any data
|
|
return;
|
|
}
|
|
uint16_t dist_cm = rangefinder.distance_cm_orient(ROTATION_NONE);
|
|
uavcan_equipment_range_sensor_Measurement pkt {};
|
|
pkt.sensor_id = rangefinder.get_address(0);
|
|
switch (status) {
|
|
case RangeFinder::Status::OutOfRangeLow:
|
|
pkt.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_TOO_CLOSE;
|
|
break;
|
|
case RangeFinder::Status::OutOfRangeHigh:
|
|
pkt.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_TOO_FAR;
|
|
break;
|
|
case RangeFinder::Status::Good:
|
|
pkt.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_VALID_RANGE;
|
|
break;
|
|
default:
|
|
pkt.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_UNDEFINED;
|
|
break;
|
|
}
|
|
switch (rangefinder.get_mav_distance_sensor_type_orient(ROTATION_NONE)) {
|
|
case MAV_DISTANCE_SENSOR_LASER:
|
|
pkt.sensor_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_LIDAR;
|
|
break;
|
|
case MAV_DISTANCE_SENSOR_ULTRASOUND:
|
|
pkt.sensor_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_SONAR;
|
|
break;
|
|
case MAV_DISTANCE_SENSOR_RADAR:
|
|
pkt.sensor_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_RADAR;
|
|
break;
|
|
default:
|
|
pkt.sensor_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_UNDEFINED;
|
|
break;
|
|
}
|
|
|
|
pkt.range = dist_cm * 0.01;
|
|
fix_float16(pkt.range);
|
|
|
|
uint8_t buffer[UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_MAX_SIZE] {};
|
|
uint16_t total_size = uavcan_equipment_range_sensor_Measurement_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SIGNATURE,
|
|
UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
#endif // HAL_PERIPH_ENABLE_RANGEFINDER
|
|
}
|
|
|
|
|
|
#ifdef HAL_PERIPH_ENABLE_ADSB
|
|
/*
|
|
map an ADSB_VEHICLE MAVLink message to a UAVCAN TrafficReport message
|
|
*/
|
|
void AP_Periph_FW::can_send_ADSB(struct __mavlink_adsb_vehicle_t &msg)
|
|
{
|
|
ardupilot_equipment_trafficmonitor_TrafficReport pkt {};
|
|
pkt.timestamp.usec = 0;
|
|
pkt.icao_address = msg.ICAO_address;
|
|
pkt.tslc = msg.tslc;
|
|
pkt.latitude_deg_1e7 = msg.lat;
|
|
pkt.longitude_deg_1e7 = msg.lon;
|
|
pkt.alt_m = msg.altitude * 1e-3;
|
|
|
|
pkt.heading = radians(msg.heading * 1e-2);
|
|
fix_float16(pkt.heading);
|
|
|
|
pkt.velocity[0] = cosf(pkt.heading) * msg.hor_velocity * 1e-2;
|
|
pkt.velocity[1] = sinf(pkt.heading) * msg.hor_velocity * 1e-2;
|
|
pkt.velocity[2] = -msg.ver_velocity * 1e-2;
|
|
fix_float16(pkt.velocity[0]);
|
|
fix_float16(pkt.velocity[1]);
|
|
fix_float16(pkt.velocity[2]);
|
|
|
|
pkt.squawk = msg.squawk;
|
|
memcpy(pkt.callsign, msg.callsign, MIN(sizeof(msg.callsign),sizeof(pkt.callsign)));
|
|
if (msg.flags & 0x8000) {
|
|
pkt.source = ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_SOURCE_ADSB_UAT;
|
|
} else {
|
|
pkt.source = ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_SOURCE_ADSB;
|
|
}
|
|
|
|
pkt.traffic_type = msg.emitter_type;
|
|
|
|
if ((msg.flags & ADSB_FLAGS_VALID_ALTITUDE) != 0 && msg.altitude_type == 0) {
|
|
pkt.alt_type = ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_ALT_TYPE_PRESSURE_AMSL;
|
|
} else if ((msg.flags & ADSB_FLAGS_VALID_ALTITUDE) != 0 && msg.altitude_type == 1) {
|
|
pkt.alt_type = ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_ALT_TYPE_WGS84;
|
|
} else {
|
|
pkt.alt_type = ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_ALT_TYPE_ALT_UNKNOWN;
|
|
}
|
|
|
|
pkt.lat_lon_valid = (msg.flags & ADSB_FLAGS_VALID_COORDS) != 0;
|
|
pkt.heading_valid = (msg.flags & ADSB_FLAGS_VALID_HEADING) != 0;
|
|
pkt.velocity_valid = (msg.flags & ADSB_FLAGS_VALID_VELOCITY) != 0;
|
|
pkt.callsign_valid = (msg.flags & ADSB_FLAGS_VALID_CALLSIGN) != 0;
|
|
pkt.ident_valid = (msg.flags & ADSB_FLAGS_VALID_SQUAWK) != 0;
|
|
pkt.simulated_report = (msg.flags & ADSB_FLAGS_SIMULATED) != 0;
|
|
|
|
// these flags are not in common.xml
|
|
pkt.vertical_velocity_valid = (msg.flags & 0x0080) != 0;
|
|
pkt.baro_valid = (msg.flags & 0x0100) != 0;
|
|
|
|
uint8_t buffer[ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_MAX_SIZE] {};
|
|
uint16_t total_size = ardupilot_equipment_trafficmonitor_TrafficReport_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_SIGNATURE,
|
|
ARDUPILOT_EQUIPMENT_TRAFFICMONITOR_TRAFFICREPORT_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
&buffer[0],
|
|
total_size);
|
|
}
|
|
#endif // HAL_PERIPH_ENABLE_ADSB
|
|
|
|
// printf to CAN LogMessage for debugging
|
|
void can_printf(const char *fmt, ...)
|
|
{
|
|
uavcan_protocol_debug_LogMessage pkt {};
|
|
uint8_t buffer[UAVCAN_PROTOCOL_DEBUG_LOGMESSAGE_MAX_SIZE] {};
|
|
char tbuf[100];
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
uint32_t n = vsnprintf(tbuf, sizeof(tbuf), fmt, ap);
|
|
va_end(ap);
|
|
pkt.text.len = MIN(n, sizeof(tbuf));
|
|
pkt.text.data = (uint8_t *)&tbuf[0];
|
|
|
|
uint32_t len = uavcan_protocol_debug_LogMessage_encode(&pkt, buffer);
|
|
|
|
canardBroadcast(&canard,
|
|
UAVCAN_PROTOCOL_DEBUG_LOGMESSAGE_SIGNATURE,
|
|
UAVCAN_PROTOCOL_DEBUG_LOGMESSAGE_ID,
|
|
&transfer_id,
|
|
CANARD_TRANSFER_PRIORITY_LOW,
|
|
buffer,
|
|
len);
|
|
|
|
}
|