mirror of https://github.com/ArduPilot/ardupilot
689 lines
19 KiB
Plaintext
689 lines
19 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*****************************************************************************
|
|
* The init_ardupilot function processes everything we need for an in - air restart
|
|
* We will determine later if we are actually on the ground and process a
|
|
* ground start in that case.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
// Functions called from the top-level menu
|
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
|
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
|
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv);
|
|
|
|
// This is the help function
|
|
// PSTR is an AVR macro to read strings from flash memory
|
|
// printf_P is a version of print_f that reads from flash memory
|
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf_P(PSTR("Commands:\n"
|
|
" logs\n"
|
|
" setup\n"
|
|
" test\n"
|
|
" reboot\n"
|
|
"\n"));
|
|
return(0);
|
|
}
|
|
|
|
// Command/function table for the top-level menu.
|
|
const struct Menu::command main_menu_commands[] PROGMEM = {
|
|
// command function called
|
|
// ======= ===============
|
|
{"logs", process_logs},
|
|
{"setup", setup_mode},
|
|
{"test", test_mode},
|
|
{"reboot", reboot_board},
|
|
{"help", main_menu_help},
|
|
};
|
|
|
|
// Create the top-level menu object.
|
|
MENU(main_menu, THISFIRMWARE, main_menu_commands);
|
|
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
reboot_apm();
|
|
return 0;
|
|
}
|
|
|
|
// the user wants the CLI. It never exits
|
|
static void run_cli(AP_HAL::UARTDriver *port)
|
|
{
|
|
cliSerial = port;
|
|
Menu::set_port(port);
|
|
port->set_blocking_writes(true);
|
|
|
|
// disable the mavlink delay callback
|
|
hal.scheduler->register_delay_callback(NULL, 5);
|
|
|
|
while (1) {
|
|
main_menu.run();
|
|
}
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
static void init_ardupilot()
|
|
{
|
|
#if USB_MUX_PIN > 0
|
|
// on the APM2 board we have a mux thet switches UART0 between
|
|
// USB and the board header. If the right ArduPPM firmware is
|
|
// installed we can detect if USB is connected using the
|
|
// USB_MUX_PIN
|
|
pinMode(USB_MUX_PIN, INPUT);
|
|
|
|
ap_system.usb_connected = !digitalReadFast(USB_MUX_PIN);
|
|
if (!ap_system.usb_connected) {
|
|
// USB is not connected, this means UART0 may be a Xbee, with
|
|
// its darned bricking problem. We can't write to it for at
|
|
// least one second after powering up. Simplest solution for
|
|
// now is to delay for 1 second. Something more elegant may be
|
|
// added later
|
|
delay(1000);
|
|
}
|
|
#endif
|
|
|
|
// Console serial port
|
|
//
|
|
// The console port buffers are defined to be sufficiently large to support
|
|
// the MAVLink protocol efficiently
|
|
//
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
// we need more memory for HIL, as we get a much higher packet rate
|
|
hal.uartA->begin(SERIAL0_BAUD, 256, 256);
|
|
#else
|
|
// use a bit less for non-HIL operation
|
|
hal.uartA->begin(SERIAL0_BAUD, 128, 128);
|
|
#endif
|
|
|
|
// GPS serial port.
|
|
//
|
|
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU
|
|
// standard gps running. Note that we need a 256 byte buffer for some
|
|
// GPS types (eg. UBLOX)
|
|
hal.uartB->begin(38400, 256, 16);
|
|
#endif
|
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE
|
|
"\n\nFree RAM: %u\n"),
|
|
memcheck_available_memory());
|
|
|
|
//
|
|
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
|
|
//
|
|
report_version();
|
|
|
|
// setup IO pins
|
|
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
|
|
digitalWrite(A_LED_PIN, LED_OFF);
|
|
|
|
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
|
|
digitalWrite(B_LED_PIN, LED_OFF);
|
|
|
|
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
|
|
digitalWrite(C_LED_PIN, LED_OFF);
|
|
|
|
#if SLIDE_SWITCH_PIN > 0
|
|
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode
|
|
#endif
|
|
#if CONFIG_PUSHBUTTON == ENABLED
|
|
pinMode(PUSHBUTTON_PIN, INPUT); // unused
|
|
#endif
|
|
|
|
relay.init();
|
|
|
|
#if COPTER_LEDS == ENABLED
|
|
pinMode(COPTER_LED_1, OUTPUT); //Motor LED
|
|
pinMode(COPTER_LED_2, OUTPUT); //Motor LED
|
|
pinMode(COPTER_LED_3, OUTPUT); //Motor LED
|
|
pinMode(COPTER_LED_4, OUTPUT); //Motor LED
|
|
pinMode(COPTER_LED_5, OUTPUT); //Motor or Aux LED
|
|
pinMode(COPTER_LED_6, OUTPUT); //Motor or Aux LED
|
|
pinMode(COPTER_LED_7, OUTPUT); //Motor or GPS LED
|
|
pinMode(COPTER_LED_8, OUTPUT); //Motor or GPS LED
|
|
|
|
if ( !bitRead(g.copter_leds_mode, 3) ) {
|
|
piezo_beep();
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
// load parameters from EEPROM
|
|
load_parameters();
|
|
|
|
// init the GCS
|
|
gcs0.init(hal.uartA);
|
|
|
|
// Register the mavlink service callback. This will run
|
|
// anytime there are more than 5ms remaining in a call to
|
|
// hal.scheduler->delay.
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
|
|
|
|
#if USB_MUX_PIN > 0
|
|
if (!ap_system.usb_connected) {
|
|
// we are not connected via USB, re-init UART0 with right
|
|
// baud rate
|
|
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
|
|
}
|
|
#else
|
|
// we have a 2nd serial port for telemetry
|
|
hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128);
|
|
gcs3.init(hal.uartC);
|
|
#endif
|
|
|
|
// identify ourselves correctly with the ground station
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
mavlink_system.type = 2; //MAV_QUADROTOR;
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
DataFlash.Init();
|
|
if (!DataFlash.CardInserted()) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash inserted"));
|
|
g.log_bitmask.set(0);
|
|
} else if (DataFlash.NeedErase()) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
|
|
do_erase_logs();
|
|
}
|
|
if (g.log_bitmask != 0) {
|
|
DataFlash.start_new_log();
|
|
}
|
|
#endif
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME
|
|
motors.servo_manual = false;
|
|
motors.init_swash(); // heli initialisation
|
|
#endif
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
init_rc_out(); // sets up the timer libs
|
|
/*
|
|
* setup the 'main loop is dead' check. Note that this relies on
|
|
* the RC library being initialised.
|
|
*/
|
|
hal.scheduler->register_timer_failsafe(failsafe_check, 1000);
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
#if CONFIG_ADC == ENABLED
|
|
// begin filtering the ADC Gyros
|
|
adc.Init(); // APM ADC library initialization
|
|
#endif // CONFIG_ADC
|
|
|
|
barometer.init();
|
|
|
|
#endif // HIL_MODE
|
|
|
|
// Do GPS init
|
|
g_gps = &g_gps_driver;
|
|
// GPS Initialization
|
|
g_gps->init(hal.uartB, GPS::GPS_ENGINE_AIRBORNE_1G);
|
|
|
|
if(g.compass_enabled)
|
|
init_compass();
|
|
|
|
// init the optical flow sensor
|
|
if(g.optflow_enabled) {
|
|
init_optflow();
|
|
}
|
|
|
|
#if INERTIAL_NAV_XY == ENABLED || INERTIAL_NAV_Z == ENABLED
|
|
// initialise inertial nav
|
|
inertial_nav.init();
|
|
#endif
|
|
|
|
#ifdef USERHOOK_INIT
|
|
USERHOOK_INIT
|
|
#endif
|
|
|
|
#if CLI_ENABLED == ENABLED && CLI_SLIDER_ENABLED == ENABLED
|
|
// If the switch is in 'menu' mode, run the main menu.
|
|
//
|
|
// Since we can't be sure that the setup or test mode won't leave
|
|
// the system in an odd state, we don't let the user exit the top
|
|
// menu; they must reset in order to fly.
|
|
//
|
|
if (check_startup_for_CLI()) {
|
|
digitalWrite(A_LED_PIN, LED_ON); // turn on setup-mode LED
|
|
cliSerial->printf_P(PSTR("\nCLI:\n\n"));
|
|
run_cli(cliSerial);
|
|
}
|
|
#else
|
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
|
|
cliSerial->println_P(msg);
|
|
#if USB_MUX_PIN == 0
|
|
hal.uartC->println_P(msg);
|
|
#endif
|
|
#endif // CLI_ENABLED
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
// read Baro pressure at ground
|
|
//-----------------------------
|
|
init_barometer();
|
|
#endif
|
|
|
|
// initialise sonar
|
|
#if CONFIG_SONAR == ENABLED
|
|
init_sonar();
|
|
#endif
|
|
|
|
#if FRAME_CONIG == HELI_FRAME
|
|
// initialise controller filters
|
|
init_rate_controllers();
|
|
#endif // HELI_FRAME
|
|
|
|
// initialize commands
|
|
// -------------------
|
|
init_commands();
|
|
|
|
// set the correct flight mode
|
|
// ---------------------------
|
|
reset_control_switch();
|
|
|
|
|
|
startup_ground();
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
Log_Write_Startup();
|
|
#endif
|
|
|
|
init_ap_limits();
|
|
|
|
cliSerial->print_P(PSTR("\nReady to FLY "));
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Experimental AP_Limits library - set constraints, limits, fences, minima,
|
|
// maxima on various parameters
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static void init_ap_limits() {
|
|
#if AP_LIMITS == ENABLED
|
|
// The linked list looks (logically) like this [limits module] -> [first
|
|
// limit module] -> [second limit module] -> [third limit module] -> NULL
|
|
|
|
|
|
// The details of the linked list are handled by the methods
|
|
// modules_first, modules_current, modules_next, modules_last, modules_add
|
|
// in limits
|
|
|
|
limits.modules_add(&gpslock_limit);
|
|
limits.modules_add(&geofence_limit);
|
|
limits.modules_add(&altitude_limit);
|
|
|
|
|
|
if (limits.debug()) {
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Limits Modules Loaded"));
|
|
|
|
AP_Limit_Module *m = limits.modules_first();
|
|
while (m) {
|
|
gcs_send_text_P(SEVERITY_LOW, get_module_name(m->get_module_id()));
|
|
m = limits.modules_next();
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
//******************************************************************************
|
|
//This function does all the calibrations, etc. that we need during a ground start
|
|
//******************************************************************************
|
|
static void startup_ground(void)
|
|
{
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START"));
|
|
|
|
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
|
|
ahrs.init();
|
|
|
|
// Warm up and read Gyro offsets
|
|
// -----------------------------
|
|
ins.init(AP_InertialSensor::COLD_START,
|
|
ins_sample_rate,
|
|
flash_leds);
|
|
#if CLI_ENABLED == ENABLED
|
|
report_ins();
|
|
#endif
|
|
|
|
// setup fast AHRS gains to get right attitude
|
|
ahrs.set_fast_gains(true);
|
|
|
|
#if SECONDARY_DMP_ENABLED == ENABLED
|
|
ahrs2.init(&timer_scheduler);
|
|
ahrs2.set_as_secondary(true);
|
|
ahrs2.set_fast_gains(true);
|
|
#endif
|
|
|
|
// reset the leds
|
|
// ---------------------------
|
|
clear_leds();
|
|
|
|
// when we re-calibrate the gyros,
|
|
// all previous I values are invalid
|
|
reset_I_all();
|
|
}
|
|
|
|
// set_mode - change flight mode and perform any necessary initialisation
|
|
static void set_mode(uint8_t mode)
|
|
{
|
|
// Switch to stabilize mode if requested mode requires a GPS lock
|
|
if(!ap.home_is_set) {
|
|
if (mode > ALT_HOLD && mode != TOY_A && mode != TOY_M && mode != OF_LOITER && mode != LAND) {
|
|
mode = STABILIZE;
|
|
}
|
|
}
|
|
|
|
// Switch to stabilize if OF_LOITER requested but no optical flow sensor
|
|
if (mode == OF_LOITER && !g.optflow_enabled ) {
|
|
mode = STABILIZE;
|
|
}
|
|
|
|
control_mode = mode;
|
|
control_mode = constrain(control_mode, 0, NUM_MODES - 1);
|
|
|
|
// used to stop fly_aways
|
|
// set to false if we have low throttle
|
|
motors.auto_armed(g.rc_3.control_in > 0 || ap.failsafe);
|
|
set_auto_armed(g.rc_3.control_in > 0 || ap.failsafe);
|
|
|
|
// if we change modes, we must clear landed flag
|
|
set_land_complete(false);
|
|
|
|
// debug to Serial terminal
|
|
//cliSerial->println(flight_mode_strings[control_mode]);
|
|
|
|
ap.loiter_override = false;
|
|
|
|
// report the GPS and Motor arming status
|
|
led_mode = NORMAL_LEDS;
|
|
|
|
switch(control_mode)
|
|
{
|
|
case ACRO:
|
|
ap.manual_throttle = true;
|
|
ap.manual_attitude = true;
|
|
set_yaw_mode(YAW_ACRO);
|
|
set_roll_pitch_mode(ROLL_PITCH_ACRO);
|
|
set_throttle_mode(THROTTLE_MANUAL);
|
|
// reset acro axis targets to current attitude
|
|
if(g.axis_enabled){
|
|
roll_axis = ahrs.roll_sensor;
|
|
pitch_axis = ahrs.pitch_sensor;
|
|
nav_yaw = ahrs.yaw_sensor;
|
|
}
|
|
break;
|
|
|
|
case STABILIZE:
|
|
ap.manual_throttle = true;
|
|
ap.manual_attitude = true;
|
|
set_yaw_mode(YAW_HOLD);
|
|
set_roll_pitch_mode(ROLL_PITCH_STABLE);
|
|
set_throttle_mode(STABILIZE_THROTTLE);
|
|
break;
|
|
|
|
case ALT_HOLD:
|
|
ap.manual_throttle = false;
|
|
ap.manual_attitude = true;
|
|
set_yaw_mode(ALT_HOLD_YAW);
|
|
set_roll_pitch_mode(ALT_HOLD_RP);
|
|
set_throttle_mode(ALT_HOLD_THR);
|
|
break;
|
|
|
|
case AUTO:
|
|
ap.manual_throttle = false;
|
|
ap.manual_attitude = false;
|
|
set_yaw_mode(AUTO_YAW);
|
|
set_roll_pitch_mode(AUTO_RP);
|
|
set_throttle_mode(AUTO_THR);
|
|
|
|
// loads the commands from where we left off
|
|
init_commands();
|
|
break;
|
|
|
|
case CIRCLE:
|
|
ap.manual_throttle = false;
|
|
ap.manual_attitude = false;
|
|
|
|
// start circling around current location
|
|
set_next_WP(¤t_loc);
|
|
circle_WP = next_WP;
|
|
|
|
// set yaw to point to center of circle
|
|
yaw_look_at_WP = circle_WP;
|
|
set_yaw_mode(YAW_LOOK_AT_LOCATION);
|
|
set_roll_pitch_mode(CIRCLE_RP);
|
|
set_throttle_mode(CIRCLE_THR);
|
|
circle_angle = 0;
|
|
break;
|
|
|
|
case LOITER:
|
|
ap.manual_throttle = false;
|
|
ap.manual_attitude = false;
|
|
set_yaw_mode(LOITER_YAW);
|
|
set_roll_pitch_mode(LOITER_RP);
|
|
set_throttle_mode(LOITER_THR);
|
|
set_next_WP(¤t_loc);
|
|
break;
|
|
|
|
case POSITION:
|
|
ap.manual_throttle = true;
|
|
ap.manual_attitude = false;
|
|
set_yaw_mode(YAW_HOLD);
|
|
set_roll_pitch_mode(LOITER_RP);
|
|
set_throttle_mode(THROTTLE_MANUAL);
|
|
set_next_WP(¤t_loc);
|
|
break;
|
|
|
|
case GUIDED:
|
|
ap.manual_throttle = false;
|
|
ap.manual_attitude = false;
|
|
set_yaw_mode(GUIDED_YAW);
|
|
set_roll_pitch_mode(GUIDED_RP);
|
|
set_throttle_mode(GUIDED_THR);
|
|
wp_control = WP_MODE;
|
|
wp_verify_byte = 0;
|
|
set_next_WP(&guided_WP);
|
|
break;
|
|
|
|
case LAND:
|
|
if( ap.home_is_set ) {
|
|
// switch to loiter if we have gps
|
|
ap.manual_attitude = false;
|
|
set_yaw_mode(LOITER_YAW);
|
|
set_roll_pitch_mode(LOITER_RP);
|
|
}else{
|
|
// otherwise remain with stabilize roll and pitch
|
|
ap.manual_attitude = true;
|
|
set_yaw_mode(YAW_HOLD);
|
|
set_roll_pitch_mode(ROLL_PITCH_STABLE);
|
|
}
|
|
ap.manual_throttle = false;
|
|
do_land();
|
|
break;
|
|
|
|
case RTL:
|
|
ap.manual_throttle = false;
|
|
ap.manual_attitude = false;
|
|
do_RTL();
|
|
break;
|
|
|
|
case OF_LOITER:
|
|
ap.manual_throttle = false;
|
|
ap.manual_attitude = false;
|
|
set_yaw_mode(OF_LOITER_YAW);
|
|
set_roll_pitch_mode(OF_LOITER_RP);
|
|
set_throttle_mode(OF_LOITER_THR);
|
|
set_next_WP(¤t_loc);
|
|
break;
|
|
|
|
// THOR
|
|
// These are the flight modes for Toy mode
|
|
// See the defines for the enumerated values
|
|
case TOY_A:
|
|
ap.manual_throttle = false;
|
|
ap.manual_attitude = true;
|
|
set_yaw_mode(YAW_TOY);
|
|
set_roll_pitch_mode(ROLL_PITCH_TOY);
|
|
set_throttle_mode(THROTTLE_AUTO);
|
|
wp_control = NO_NAV_MODE;
|
|
|
|
// save throttle for fast exit of Alt hold
|
|
saved_toy_throttle = g.rc_3.control_in;
|
|
|
|
break;
|
|
|
|
case TOY_M:
|
|
ap.manual_throttle = false;
|
|
ap.manual_attitude = true;
|
|
set_yaw_mode(YAW_TOY);
|
|
set_roll_pitch_mode(ROLL_PITCH_TOY);
|
|
wp_control = NO_NAV_MODE;
|
|
set_throttle_mode(THROTTLE_HOLD);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if(ap.manual_attitude) {
|
|
// We are under manual attitude control
|
|
// remove the navigation from roll and pitch command
|
|
reset_nav_params();
|
|
// remove the wind compenstaion
|
|
reset_wind_I();
|
|
}
|
|
|
|
Log_Write_Mode(control_mode);
|
|
}
|
|
|
|
static void
|
|
init_simple_bearing()
|
|
{
|
|
initial_simple_bearing = ahrs.yaw_sensor;
|
|
if (g.log_bitmask != 0) {
|
|
Log_Write_Data(DATA_INIT_SIMPLE_BEARING, initial_simple_bearing);
|
|
}
|
|
}
|
|
|
|
#if CLI_SLIDER_ENABLED == ENABLED && CLI_ENABLED == ENABLED
|
|
static bool check_startup_for_CLI()
|
|
{
|
|
return (digitalReadFast(SLIDE_SWITCH_PIN) == 0);
|
|
}
|
|
#endif // CLI_ENABLED
|
|
|
|
/*
|
|
* map from a 8 bit EEPROM baud rate to a real baud rate
|
|
*/
|
|
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
|
|
{
|
|
switch (rate) {
|
|
case 1: return 1200;
|
|
case 2: return 2400;
|
|
case 4: return 4800;
|
|
case 9: return 9600;
|
|
case 19: return 19200;
|
|
case 38: return 38400;
|
|
case 57: return 57600;
|
|
case 111: return 111100;
|
|
case 115: return 115200;
|
|
}
|
|
//cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD"));
|
|
return default_baud;
|
|
}
|
|
|
|
#if USB_MUX_PIN > 0
|
|
static void check_usb_mux(void)
|
|
{
|
|
bool usb_check = !digitalReadFast(USB_MUX_PIN);
|
|
if (usb_check == ap_system.usb_connected) {
|
|
return;
|
|
}
|
|
|
|
// the user has switched to/from the telemetry port
|
|
ap_system.usb_connected = usb_check;
|
|
if (ap_system.usb_connected) {
|
|
hal.uartA->begin(SERIAL0_BAUD);
|
|
} else {
|
|
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* called by gyro/accel init to flash LEDs so user
|
|
* has some mesmerising lights to watch while waiting
|
|
*/
|
|
void flash_leds(bool on)
|
|
{
|
|
digitalWrite(A_LED_PIN, on ? LED_OFF : LED_ON);
|
|
digitalWrite(C_LED_PIN, on ? LED_ON : LED_OFF);
|
|
}
|
|
|
|
/*
|
|
* Read Vcc vs 1.1v internal reference
|
|
*/
|
|
uint16_t board_voltage(void)
|
|
{
|
|
return board_vcc_analog_source->read_latest();
|
|
}
|
|
|
|
/*
|
|
force a software reset of the APM
|
|
*/
|
|
static void reboot_apm(void) {
|
|
hal.scheduler->reboot();
|
|
}
|
|
|
|
//
|
|
// print_flight_mode - prints flight mode to serial port.
|
|
//
|
|
static void
|
|
print_flight_mode(uint8_t mode)
|
|
{
|
|
switch (mode) {
|
|
case STABILIZE:
|
|
cliSerial->print_P(PSTR("STABILIZE"));
|
|
break;
|
|
case ACRO:
|
|
cliSerial->print_P(PSTR("ACRO"));
|
|
break;
|
|
case ALT_HOLD:
|
|
cliSerial->print_P(PSTR("ALT_HOLD"));
|
|
break;
|
|
case AUTO:
|
|
cliSerial->print_P(PSTR("AUTO"));
|
|
break;
|
|
case GUIDED:
|
|
cliSerial->print_P(PSTR("GUIDED"));
|
|
break;
|
|
case LOITER:
|
|
cliSerial->print_P(PSTR("LOITER"));
|
|
break;
|
|
case RTL:
|
|
cliSerial->print_P(PSTR("RTL"));
|
|
break;
|
|
case CIRCLE:
|
|
cliSerial->print_P(PSTR("CIRCLE"));
|
|
break;
|
|
case POSITION:
|
|
cliSerial->print_P(PSTR("POSITION"));
|
|
break;
|
|
case LAND:
|
|
cliSerial->print_P(PSTR("LAND"));
|
|
break;
|
|
case OF_LOITER:
|
|
cliSerial->print_P(PSTR("OF_LOITER"));
|
|
break;
|
|
case TOY_M:
|
|
cliSerial->print_P(PSTR("TOY_M"));
|
|
break;
|
|
case TOY_A:
|
|
cliSerial->print_P(PSTR("TOY_A"));
|
|
break;
|
|
default:
|
|
cliSerial->print_P(PSTR("---"));
|
|
break;
|
|
}
|
|
}
|