ardupilot/Rover/mode_circle.cpp
2024-01-07 10:59:25 +11:00

238 lines
8.0 KiB
C++

#include "Rover.h"
#define AR_CIRCLE_ACCEL_DEFAULT 1.0 // default acceleration in m/s/s if not specified by user
#define AR_CIRCLE_RADIUS_MIN 0.5 // minimum radius in meters
#define AR_CIRCLE_REACHED_EDGE_DIST 0.2 // vehicle has reached edge if within 0.2m
const AP_Param::GroupInfo ModeCircle::var_info[] = {
// @Param: _RADIUS
// @DisplayName: Circle Radius
// @Description: Vehicle will circle the center at this distance
// @Units: m
// @Range: 0 100
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_RADIUS", 1, ModeCircle, radius, 20),
// @Param: _SPEED
// @DisplayName: Circle Speed
// @Description: Vehicle will move at this speed around the circle. If set to zero WP_SPEED will be used
// @Units: m/s
// @Range: 0 10
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("_SPEED", 2, ModeCircle, speed, 0),
// @Param: _DIR
// @DisplayName: Circle Direction
// @Description: Circle Direction
// @Values: 0:Clockwise, 1:Counter-Clockwise
// @User: Standard
AP_GROUPINFO("_DIR", 3, ModeCircle, direction, 0),
AP_GROUPEND
};
ModeCircle::ModeCircle() : Mode()
{
AP_Param::setup_object_defaults(this, var_info);
}
// initialise with specific center location, radius (in meters) and direction
// replaces use of _enter when initialised from within Auto mode
bool ModeCircle::set_center(const Location& center_loc, float radius_m, bool dir_ccw)
{
Vector2f center_pos_cm;
if (!center_loc.get_vector_xy_from_origin_NE(center_pos_cm)) {
return false;
}
if (!_enter()) {
return false;
}
// convert center position from cm to m
config.center_pos = center_pos_cm * 0.01;
// set radius
config.radius = MAX(fabsf(radius_m), AR_CIRCLE_RADIUS_MIN);
// set direction
config.dir = dir_ccw ? Direction::CCW : Direction::CW;
// set target yaw rad (target point on circle)
init_target_yaw_rad();
// record center as location (only used for reporting)
config.center_loc = center_loc;
return true;
}
// initialize dock mode
bool ModeCircle::_enter()
{
// capture starting point and yaw
if (!AP::ahrs().get_relative_position_NE_origin(config.center_pos)) {
return false;
}
config.radius = MAX(fabsf(radius), AR_CIRCLE_RADIUS_MIN);
config.dir = (direction == 1) ? Direction::CCW : Direction::CW;
config.speed = is_positive(speed) ? speed : g2.wp_nav.get_default_speed();
target.yaw_rad = AP::ahrs().get_yaw();
target.speed = 0;
// calculate speed, accel and jerk limits
// otherwise the vehicle uses wp_nav default speed limit
float atc_accel_max = MIN(g2.attitude_control.get_accel_max(), g2.attitude_control.get_decel_max());
if (!is_positive(atc_accel_max)) {
atc_accel_max = AR_CIRCLE_ACCEL_DEFAULT;
}
const float accel_max = is_positive(g2.wp_nav.get_default_accel()) ? MIN(g2.wp_nav.get_default_accel(), atc_accel_max) : atc_accel_max;
const float jerk_max = is_positive(g2.wp_nav.get_default_jerk()) ? g2.wp_nav.get_default_jerk() : accel_max;
// initialise position controller
g2.pos_control.set_limits(config.speed, accel_max, g2.attitude_control.get_turn_lat_accel_max(), jerk_max);
g2.pos_control.init();
// initialise angles covered and reached_edge state
angle_total_rad = 0;
reached_edge = false;
dist_to_edge_m = 0;
return true;
}
// initialise target_yaw_rad using the vehicle's position and yaw
// if there is no current position estimate target_yaw_rad is set to 0
void ModeCircle::init_target_yaw_rad()
{
// if no position estimate use vehicle yaw
Vector2f curr_pos_NE;
if (!AP::ahrs().get_relative_position_NE_origin(curr_pos_NE)) {
target.yaw_rad = AP::ahrs().yaw;
return;
}
// calc vector from circle center to vehicle
Vector2f center_to_veh = (curr_pos_NE - config.center_pos);
float dist_m = center_to_veh.length();
// if current position is exactly at the center of the circle return vehicle yaw
if (is_zero(dist_m)) {
target.yaw_rad = AP::ahrs().yaw;
} else {
target.yaw_rad = center_to_veh.angle();
}
}
void ModeCircle::update()
{
// get current position
Vector2f curr_pos;
const bool position_ok = AP::ahrs().get_relative_position_NE_origin(curr_pos);
// if no position estimate stop vehicle
if (!position_ok) {
stop_vehicle();
return;
}
// check if vehicle has reached edge of circle
const Vector2f center_to_veh = curr_pos - config.center_pos;
_distance_to_destination = center_to_veh.length();
dist_to_edge_m = fabsf(_distance_to_destination - config.radius);
if (!reached_edge) {
const float dist_thresh_m = MAX(rover.g2.turn_radius, AR_CIRCLE_REACHED_EDGE_DIST);
reached_edge = dist_to_edge_m <= dist_thresh_m;
}
// accelerate speed up to desired speed
const float speed_max = reached_edge ? config.speed : 0.0;
const float speed_change_max = (g2.pos_control.get_accel_max() * rover.G_Dt);
target.speed = constrain_float(speed_max, target.speed - speed_change_max, target.speed + speed_change_max);
// calculate angular rate and update target angle
const float circumference = 2.0 * M_PI * config.radius;
const float angular_rate_rad = (target.speed / circumference) * M_2PI * (config.dir == Direction::CW ? 1.0 : -1.0);
const float angle_dt = angular_rate_rad * rover.G_Dt;
target.yaw_rad = wrap_PI(target.yaw_rad + angle_dt);
angle_total_rad += angle_dt;
// calculate target point's position, velocity and acceleration
target.pos = config.center_pos.topostype();
target.pos.offset_bearing(degrees(target.yaw_rad), config.radius);
// velocity is perpendicular to angle from the circle's center to the target point on the edge of the circle
target.vel = Vector2f(target.speed, 0);
target.vel.rotate(target.yaw_rad + radians(90));
// acceleration is towards center of circle and is speed^2 / radius
target.accel = Vector2f(sq(target.speed) / config.radius, 0);
target.accel.rotate(target.yaw_rad + radians(180));
g2.pos_control.input_pos_vel_accel_target(target.pos, target.vel, target.accel, rover.G_Dt);
g2.pos_control.update(rover.G_Dt);
// get desired speed and turn rate from pos_control
const float desired_speed = g2.pos_control.get_desired_speed();
const float desired_turn_rate = g2.pos_control.get_desired_turn_rate_rads();
// run steering and throttle controllers
calc_steering_from_turn_rate(desired_turn_rate);
calc_throttle(desired_speed, true);
}
// return desired heading (in degrees) and cross track error (in meters) for reporting to ground station (NAV_CONTROLLER_OUTPUT message)
float ModeCircle::wp_bearing() const
{
Vector2f curr_pos_NE;
if (!AP::ahrs().get_relative_position_NE_origin(curr_pos_NE)) {
return 0;
}
// calc vector from circle center to vehicle
Vector2f veh_to_center = (config.center_pos - curr_pos_NE);
if (veh_to_center.is_zero()) {
return 0;
}
return degrees(veh_to_center.angle());
}
float ModeCircle::nav_bearing() const
{
// get position error as a vector from the current position to the target position
const Vector2p pos_error = g2.pos_control.get_pos_error();
if (pos_error.is_zero()) {
return 0;
}
return degrees(pos_error.angle());
}
float ModeCircle::get_desired_lat_accel() const
{
return g2.pos_control.get_desired_lat_accel();
}
// set desired speed in m/s
bool ModeCircle::set_desired_speed(float speed_ms)
{
if (is_positive(speed_ms)) {
config.speed = speed_ms;
// update position controller limits if required
if (config.speed > g2.pos_control.get_speed_max()) {
g2.pos_control.set_limits(config.speed, g2.pos_control.get_accel_max(), g2.pos_control.get_lat_accel_max(), g2.pos_control.get_jerk_max());
}
return true;
}
return false;
}
// return desired location
bool ModeCircle::get_desired_location(Location& destination) const
{
destination = config.center_loc;
return true;
}