mirror of https://github.com/ArduPilot/ardupilot
753 lines
27 KiB
Plaintext
753 lines
27 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
//****************************************************************
|
|
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
|
|
//****************************************************************
|
|
|
|
|
|
/*
|
|
get a speed scaling number for control surfaces. This is applied to
|
|
PIDs to change the scaling of the PID with speed. At high speed we
|
|
move the surfaces less, and at low speeds we move them more.
|
|
*/
|
|
static float get_speed_scaler(void)
|
|
{
|
|
float aspeed, speed_scaler;
|
|
if (ahrs.airspeed_estimate(&aspeed)) {
|
|
if (aspeed > 0) {
|
|
speed_scaler = g.scaling_speed / aspeed;
|
|
} else {
|
|
speed_scaler = 2.0;
|
|
}
|
|
speed_scaler = constrain(speed_scaler, 0.5, 2.0);
|
|
} else {
|
|
if (g.channel_throttle.servo_out > 0) {
|
|
speed_scaler = 0.5 + ((float)THROTTLE_CRUISE / g.channel_throttle.servo_out / 2.0); // First order taylor expansion of square root
|
|
// Should maybe be to the 2/7 power, but we aren't goint to implement that...
|
|
}else{
|
|
speed_scaler = 1.67;
|
|
}
|
|
// This case is constrained tighter as we don't have real speed info
|
|
speed_scaler = constrain(speed_scaler, 0.6, 1.67);
|
|
}
|
|
return speed_scaler;
|
|
}
|
|
|
|
/*
|
|
return true if the current settings and mode should allow for stick mixing
|
|
*/
|
|
static bool stick_mixing_enabled(void)
|
|
{
|
|
if (control_mode == CIRCLE || control_mode > FLY_BY_WIRE_B) {
|
|
// we're in an auto mode. Check the stick mixing flag
|
|
if (g.stick_mixing != STICK_MIXING_DISABLED &&
|
|
geofence_stickmixing() &&
|
|
failsafe == FAILSAFE_NONE &&
|
|
(g.throttle_fs_enabled == 0 ||
|
|
g.channel_throttle.radio_in >= g.throttle_fs_value)) {
|
|
// we're in an auto mode, and haven't triggered failsafe
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
// non-auto mode. Always do stick mixing
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
this is the main roll stabilization function. It takes the
|
|
previously set nav_roll calculates roll servo_out to try to
|
|
stabilize the plane at the given roll
|
|
*/
|
|
static void stabilize_roll(float speed_scaler)
|
|
{
|
|
if (crash_timer > 0) {
|
|
nav_roll_cd = 0;
|
|
}
|
|
|
|
if (inverted_flight) {
|
|
// we want to fly upside down. We need to cope with wrap of
|
|
// the roll_sensor interfering with wrap of nav_roll, which
|
|
// would really confuse the PID code. The easiest way to
|
|
// handle this is to ensure both go in the same direction from
|
|
// zero
|
|
nav_roll_cd += 18000;
|
|
if (ahrs.roll_sensor < 0) nav_roll_cd -= 36000;
|
|
}
|
|
|
|
#if APM_CONTROL == DISABLED
|
|
// Calculate dersired servo output for the roll
|
|
// ---------------------------------------------
|
|
g.channel_roll.servo_out = g.pidServoRoll.get_pid_4500((nav_roll_cd - ahrs.roll_sensor), speed_scaler);
|
|
#else // APM_CONTROL == ENABLED
|
|
// calculate roll and pitch control using new APM_Control library
|
|
g.channel_roll.servo_out = g.rollController.get_servo_out(nav_roll_cd, speed_scaler, control_mode == STABILIZE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
this is the main pitch stabilization function. It takes the
|
|
previously set nav_pitch and calculates servo_out values to try to
|
|
stabilize the plane at the given attitude.
|
|
*/
|
|
static void stabilize_pitch(float speed_scaler)
|
|
{
|
|
#if APM_CONTROL == DISABLED
|
|
int32_t tempcalc = nav_pitch_cd +
|
|
fabsf(ahrs.roll_sensor * g.kff_pitch_compensation) +
|
|
(g.channel_throttle.servo_out * g.kff_throttle_to_pitch) -
|
|
(ahrs.pitch_sensor - g.pitch_trim_cd);
|
|
if (inverted_flight) {
|
|
// when flying upside down the elevator control is inverted
|
|
tempcalc = -tempcalc;
|
|
}
|
|
g.channel_pitch.servo_out = g.pidServoPitch.get_pid_4500(tempcalc, speed_scaler);
|
|
#else // APM_CONTROL == ENABLED
|
|
g.channel_pitch.servo_out = g.pitchController.get_servo_out(nav_pitch_cd, speed_scaler, control_mode == STABILIZE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
this gives the user control of the aircraft in stabilization modes
|
|
*/
|
|
static void stabilize_stick_mixing_direct()
|
|
{
|
|
if (!stick_mixing_enabled() ||
|
|
control_mode == FLY_BY_WIRE_A ||
|
|
control_mode == FLY_BY_WIRE_B ||
|
|
control_mode == TRAINING) {
|
|
return;
|
|
}
|
|
// do direct stick mixing on aileron/elevator
|
|
float ch1_inf;
|
|
float ch2_inf;
|
|
|
|
ch1_inf = (float)g.channel_roll.radio_in - (float)g.channel_roll.radio_trim;
|
|
ch1_inf = fabsf(ch1_inf);
|
|
ch1_inf = min(ch1_inf, 400.0);
|
|
ch1_inf = ((400.0 - ch1_inf) /400.0);
|
|
|
|
ch2_inf = (float)g.channel_pitch.radio_in - g.channel_pitch.radio_trim;
|
|
ch2_inf = fabsf(ch2_inf);
|
|
ch2_inf = min(ch2_inf, 400.0);
|
|
ch2_inf = ((400.0 - ch2_inf) /400.0);
|
|
|
|
// scale the sensor input based on the stick input
|
|
// -----------------------------------------------
|
|
g.channel_roll.servo_out *= ch1_inf;
|
|
g.channel_pitch.servo_out *= ch2_inf;
|
|
|
|
// Mix in stick inputs
|
|
// -------------------
|
|
g.channel_roll.servo_out += g.channel_roll.pwm_to_angle();
|
|
g.channel_pitch.servo_out += g.channel_pitch.pwm_to_angle();
|
|
}
|
|
|
|
/*
|
|
this gives the user control of the aircraft in stabilization modes
|
|
using FBW style controls
|
|
*/
|
|
static void stabilize_stick_mixing_fbw()
|
|
{
|
|
if (!stick_mixing_enabled() ||
|
|
control_mode == FLY_BY_WIRE_A ||
|
|
control_mode == FLY_BY_WIRE_B ||
|
|
control_mode == TRAINING) {
|
|
return;
|
|
}
|
|
// do FBW style stick mixing. We don't treat it linearly
|
|
// however. For inputs up to half the maximum, we use linear
|
|
// addition to the nav_roll and nav_pitch. Above that it goes
|
|
// non-linear and ends up as 2x the maximum, to ensure that
|
|
// the user can direct the plane in any direction with stick
|
|
// mixing.
|
|
float roll_input = g.channel_roll.norm_input();
|
|
if (fabsf(roll_input) > 0.5f) {
|
|
roll_input = (3*roll_input - 1);
|
|
}
|
|
nav_roll_cd += roll_input * g.roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -g.roll_limit_cd.get(), g.roll_limit_cd.get());
|
|
|
|
float pitch_input = g.channel_pitch.norm_input();
|
|
if (fabsf(pitch_input) > 0.5f) {
|
|
pitch_input = (3*pitch_input - 1);
|
|
}
|
|
if (inverted_flight) {
|
|
pitch_input = -pitch_input;
|
|
}
|
|
if (pitch_input > 0) {
|
|
nav_pitch_cd += pitch_input * g.pitch_limit_max_cd;
|
|
} else {
|
|
nav_pitch_cd += -(pitch_input * g.pitch_limit_min_cd);
|
|
}
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, g.pitch_limit_min_cd.get(), g.pitch_limit_max_cd.get());
|
|
}
|
|
|
|
|
|
/*
|
|
stabilize the yaw axis
|
|
*/
|
|
static void stabilize_yaw(float speed_scaler)
|
|
{
|
|
float ch4_inf = 1.0;
|
|
|
|
if (stick_mixing_enabled()) {
|
|
// stick mixing performed for rudder for all cases including FBW
|
|
// important for steering on the ground during landing
|
|
// -----------------------------------------------
|
|
ch4_inf = (float)g.channel_rudder.radio_in - (float)g.channel_rudder.radio_trim;
|
|
ch4_inf = fabsf(ch4_inf);
|
|
ch4_inf = min(ch4_inf, 400.0);
|
|
ch4_inf = ((400.0 - ch4_inf) /400.0);
|
|
}
|
|
|
|
// Apply output to Rudder
|
|
calc_nav_yaw(speed_scaler, ch4_inf);
|
|
g.channel_rudder.servo_out *= ch4_inf;
|
|
g.channel_rudder.servo_out += g.channel_rudder.pwm_to_angle();
|
|
}
|
|
|
|
|
|
/*
|
|
a special stabilization function for training mode
|
|
*/
|
|
static void stabilize_training(float speed_scaler)
|
|
{
|
|
if (training_manual_roll) {
|
|
g.channel_roll.servo_out = g.channel_roll.control_in;
|
|
} else {
|
|
// calculate what is needed to hold
|
|
stabilize_roll(speed_scaler);
|
|
if ((nav_roll_cd > 0 && g.channel_roll.control_in < g.channel_roll.servo_out) ||
|
|
(nav_roll_cd < 0 && g.channel_roll.control_in > g.channel_roll.servo_out)) {
|
|
// allow user to get out of the roll
|
|
g.channel_roll.servo_out = g.channel_roll.control_in;
|
|
}
|
|
}
|
|
|
|
if (training_manual_pitch) {
|
|
g.channel_pitch.servo_out = g.channel_pitch.control_in;
|
|
} else {
|
|
stabilize_pitch(speed_scaler);
|
|
if ((nav_pitch_cd > 0 && g.channel_pitch.control_in < g.channel_pitch.servo_out) ||
|
|
(nav_pitch_cd < 0 && g.channel_pitch.control_in > g.channel_pitch.servo_out)) {
|
|
// allow user to get back to level
|
|
g.channel_pitch.servo_out = g.channel_pitch.control_in;
|
|
}
|
|
}
|
|
|
|
stabilize_yaw(speed_scaler);
|
|
}
|
|
|
|
|
|
/*
|
|
main stabilization function for all 3 axes
|
|
*/
|
|
static void stabilize()
|
|
{
|
|
float speed_scaler = get_speed_scaler();
|
|
|
|
if (control_mode == TRAINING) {
|
|
stabilize_training(speed_scaler);
|
|
} else {
|
|
if (g.stick_mixing == STICK_MIXING_FBW && control_mode != STABILIZE) {
|
|
stabilize_stick_mixing_fbw();
|
|
}
|
|
stabilize_roll(speed_scaler);
|
|
stabilize_pitch(speed_scaler);
|
|
if (g.stick_mixing == STICK_MIXING_DIRECT || control_mode == STABILIZE) {
|
|
stabilize_stick_mixing_direct();
|
|
}
|
|
stabilize_yaw(speed_scaler);
|
|
}
|
|
}
|
|
|
|
|
|
static void crash_checker()
|
|
{
|
|
if(ahrs.pitch_sensor < -4500) {
|
|
crash_timer = 255;
|
|
}
|
|
if(crash_timer > 0)
|
|
crash_timer--;
|
|
}
|
|
|
|
|
|
static void calc_throttle()
|
|
{
|
|
if (g.throttle_cruise <= 1) {
|
|
// user has asked for zero throttle - this may be done by a
|
|
// mission which wants to turn off the engine for a parachute
|
|
// landing
|
|
g.channel_throttle.servo_out = 0;
|
|
return;
|
|
}
|
|
|
|
if (!alt_control_airspeed()) {
|
|
int16_t throttle_target = g.throttle_cruise + throttle_nudge;
|
|
|
|
// TODO: think up an elegant way to bump throttle when
|
|
// groundspeed_undershoot > 0 in the no airspeed sensor case; PID
|
|
// control?
|
|
|
|
// no airspeed sensor, we use nav pitch to determine the proper throttle output
|
|
// AUTO, RTL, etc
|
|
// ---------------------------------------------------------------------------
|
|
if (nav_pitch_cd >= 0) {
|
|
g.channel_throttle.servo_out = throttle_target + (g.throttle_max - throttle_target) * nav_pitch_cd / g.pitch_limit_max_cd;
|
|
} else {
|
|
g.channel_throttle.servo_out = throttle_target - (throttle_target - g.throttle_min) * nav_pitch_cd / g.pitch_limit_min_cd;
|
|
}
|
|
|
|
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
|
|
} else {
|
|
// throttle control with airspeed compensation
|
|
// -------------------------------------------
|
|
energy_error = airspeed_energy_error + altitude_error_cm * 0.098f;
|
|
|
|
// positive energy errors make the throttle go higher
|
|
g.channel_throttle.servo_out = g.throttle_cruise + g.pidTeThrottle.get_pid(energy_error);
|
|
g.channel_throttle.servo_out += (g.channel_pitch.servo_out * g.kff_pitch_to_throttle);
|
|
|
|
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out,
|
|
g.throttle_min.get(), g.throttle_max.get());
|
|
}
|
|
|
|
}
|
|
|
|
/*****************************************
|
|
* Calculate desired roll/pitch/yaw angles (in medium freq loop)
|
|
*****************************************/
|
|
|
|
// Yaw is separated into a function for heading hold on rolling take-off
|
|
// ----------------------------------------------------------------------
|
|
static void calc_nav_yaw(float speed_scaler, float ch4_inf)
|
|
{
|
|
if (hold_course_cd != -1) {
|
|
// steering on or close to ground
|
|
int32_t bearing_error_cd = nav_controller->bearing_error_cd();
|
|
g.channel_rudder.servo_out = g.pidWheelSteer.get_pid_4500(bearing_error_cd, speed_scaler) +
|
|
g.kff_rudder_mix * g.channel_roll.servo_out;
|
|
g.channel_rudder.servo_out = constrain_int16(g.channel_rudder.servo_out, -4500, 4500);
|
|
return;
|
|
}
|
|
|
|
#if APM_CONTROL == DISABLED
|
|
// always do rudder mixing from roll
|
|
g.channel_rudder.servo_out = g.kff_rudder_mix * g.channel_roll.servo_out;
|
|
|
|
// a PID to coordinate the turn (drive y axis accel to zero)
|
|
Vector3f temp = ins.get_accel();
|
|
int32_t error = -temp.y*100.0;
|
|
|
|
g.channel_rudder.servo_out += g.pidServoRudder.get_pid_4500(error, speed_scaler);
|
|
#else // APM_CONTROL == ENABLED
|
|
// use the new APM_Control library
|
|
g.channel_rudder.servo_out = g.yawController.get_servo_out(speed_scaler, ch4_inf < 0.25f) + g.channel_roll.servo_out * g.kff_rudder_mix;
|
|
#endif
|
|
}
|
|
|
|
|
|
static void calc_nav_pitch()
|
|
{
|
|
// Calculate the Pitch of the plane
|
|
// --------------------------------
|
|
if (alt_control_airspeed()) {
|
|
nav_pitch_cd = -g.pidNavPitchAirspeed.get_pid(airspeed_error_cm);
|
|
} else {
|
|
nav_pitch_cd = g.pidNavPitchAltitude.get_pid(altitude_error_cm);
|
|
}
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, g.pitch_limit_min_cd.get(), g.pitch_limit_max_cd.get());
|
|
}
|
|
|
|
|
|
static void calc_nav_roll()
|
|
{
|
|
nav_roll_cd = nav_controller->nav_roll_cd();
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -g.roll_limit_cd.get(), g.roll_limit_cd.get());
|
|
}
|
|
|
|
|
|
/*****************************************
|
|
* Roll servo slew limit
|
|
*****************************************/
|
|
/*
|
|
* float roll_slew_limit(float servo)
|
|
* {
|
|
* static float last;
|
|
* float temp = constrain(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f);
|
|
* last = servo;
|
|
* return temp;
|
|
* }*/
|
|
|
|
/*****************************************
|
|
* Throttle slew limit
|
|
*****************************************/
|
|
static void throttle_slew_limit(int16_t last_throttle)
|
|
{
|
|
// if slew limit rate is set to zero then do not slew limit
|
|
if (g.throttle_slewrate) {
|
|
// limit throttle change by the given percentage per second
|
|
float temp = g.throttle_slewrate * G_Dt * 0.01 * fabsf(g.channel_throttle.radio_max - g.channel_throttle.radio_min);
|
|
// allow a minimum change of 1 PWM per cycle
|
|
if (temp < 1) {
|
|
temp = 1;
|
|
}
|
|
g.channel_throttle.radio_out = constrain_int16(g.channel_throttle.radio_out, last_throttle - temp, last_throttle + temp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
check for automatic takeoff conditions being met
|
|
*/
|
|
static bool auto_takeoff_check(void)
|
|
{
|
|
if (g_gps == NULL || g_gps->status() != GPS::GPS_OK_FIX_3D) {
|
|
// no auto takeoff without GPS lock
|
|
return false;
|
|
}
|
|
if (g_gps->ground_speed < g.takeoff_throttle_min_speed*100.0f) {
|
|
// we haven't reached the minimum ground speed
|
|
return false;
|
|
}
|
|
|
|
if (g.takeoff_throttle_min_accel > 0.0f) {
|
|
float xaccel = ins.get_accel().x;
|
|
if (ahrs.pitch_sensor > -3000 &&
|
|
ahrs.pitch_sensor < 4500 &&
|
|
abs(ahrs.roll_sensor) < 3000 &&
|
|
xaccel >= g.takeoff_throttle_min_accel) {
|
|
// trigger with minimum acceleration when flat
|
|
// Thanks to Chris Miser for this suggestion
|
|
gcs_send_text_fmt(PSTR("Triggered AUTO xaccel=%.1f"), xaccel);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// we're good for takeoff
|
|
return true;
|
|
}
|
|
|
|
|
|
/* We want to supress the throttle if we think we are on the ground and in an autopilot controlled throttle mode.
|
|
|
|
Disable throttle if following conditions are met:
|
|
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher
|
|
* AND
|
|
* 2 - Our reported altitude is within 10 meters of the home altitude.
|
|
* 3 - Our reported speed is under 5 meters per second.
|
|
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached
|
|
* OR
|
|
* 5 - Home location is not set
|
|
*/
|
|
static bool suppress_throttle(void)
|
|
{
|
|
if (!throttle_suppressed) {
|
|
// we've previously met a condition for unsupressing the throttle
|
|
return false;
|
|
}
|
|
if (control_mode != CIRCLE && control_mode <= FLY_BY_WIRE_A) {
|
|
// the user controls the throttle
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
if (control_mode==AUTO && takeoff_complete == false && auto_takeoff_check()) {
|
|
// we're in auto takeoff
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
if (labs(home.alt - current_loc.alt) >= 1000) {
|
|
// we're more than 10m from the home altitude
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
if (g_gps != NULL &&
|
|
g_gps->status() >= GPS::GPS_OK_FIX_2D &&
|
|
g_gps->ground_speed >= 500) {
|
|
// we're moving at more than 5 m/s
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
// throttle remains suppressed
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
implement a software VTail mixer. There are 4 different mixing modes
|
|
*/
|
|
static void vtail_output_mixing(void)
|
|
{
|
|
int16_t elevator, rudder;
|
|
int16_t v1, v2;
|
|
|
|
// first get desired elevator and rudder as -500..500 values
|
|
elevator = g.channel_pitch.radio_out - 1500;
|
|
rudder = g.channel_rudder.radio_out - 1500;
|
|
|
|
v1 = (elevator - rudder)/2;
|
|
v2 = (elevator + rudder)/2;
|
|
|
|
// now map to vtail output
|
|
switch (g.vtail_output) {
|
|
case VTAIL_DISABLED:
|
|
return;
|
|
|
|
case VTAIL_UPUP:
|
|
break;
|
|
|
|
case VTAIL_UPDN:
|
|
v2 = -v2;
|
|
break;
|
|
|
|
case VTAIL_DNUP:
|
|
v1 = -v1;
|
|
break;
|
|
|
|
case VTAIL_DNDN:
|
|
v1 = -v1;
|
|
v2 = -v2;
|
|
break;
|
|
}
|
|
|
|
v1 = constrain_int16(v1, -500, 500);
|
|
v2 = constrain_int16(v2, -500, 500);
|
|
|
|
// scale for a 1500 center and 1000..2000 range, symmetric
|
|
g.channel_pitch.radio_out = 1500 + v1;
|
|
g.channel_rudder.radio_out = 1500 + v2;
|
|
}
|
|
|
|
/*****************************************
|
|
* Set the flight control servos based on the current calculated values
|
|
*****************************************/
|
|
static void set_servos(void)
|
|
{
|
|
int16_t last_throttle = g.channel_throttle.radio_out;
|
|
|
|
if (control_mode == MANUAL) {
|
|
// do a direct pass through of radio values
|
|
if (g.mix_mode == 0) {
|
|
g.channel_roll.radio_out = g.channel_roll.radio_in;
|
|
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
|
|
} else {
|
|
g.channel_roll.radio_out = hal.rcin->read(CH_ROLL);
|
|
g.channel_pitch.radio_out = hal.rcin->read(CH_PITCH);
|
|
}
|
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
|
|
g.channel_rudder.radio_out = g.channel_rudder.radio_in;
|
|
|
|
// setup extra aileron channel. We want this to come from the
|
|
// main aileron input channel, but using the 2nd channels dead
|
|
// zone, reverse and min/max settings. We need to use
|
|
// pwm_to_angle_dz() to ensure we don't trim the value for the
|
|
// deadzone of the main aileron channel, otherwise the 2nd
|
|
// aileron won't quite follow the first one
|
|
int16_t aileron_in = g.channel_roll.pwm_to_angle_dz(0);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron, aileron_in);
|
|
|
|
// setup extra elevator channel following the same logic
|
|
int16_t elevator_in = g.channel_pitch.pwm_to_angle_dz(0);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator, elevator_in);
|
|
|
|
// this aileron variant assumes you have the corresponding
|
|
// input channel setup in your transmitter for manual control
|
|
// of the 2nd aileron
|
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input);
|
|
|
|
// do the same for the corresponding elevator variant
|
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_elevator_with_input);
|
|
|
|
// copy flap control from transmitter
|
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_flap_auto);
|
|
|
|
if (g.mix_mode != 0) {
|
|
// set any differential spoilers to follow the elevons in
|
|
// manual mode.
|
|
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler1, g.channel_roll.radio_out);
|
|
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler2, g.channel_pitch.radio_out);
|
|
}
|
|
} else {
|
|
if (g.mix_mode == 0) {
|
|
// both types of secondary aileron are slaved to the roll servo out
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron, g.channel_roll.servo_out);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_aileron_with_input, g.channel_roll.servo_out);
|
|
|
|
// both types of secondary elevator are slaved to the pitch servo out
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator, g.channel_pitch.servo_out);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_elevator_with_input, g.channel_pitch.servo_out);
|
|
}else{
|
|
/*Elevon mode*/
|
|
float ch1;
|
|
float ch2;
|
|
ch1 = g.channel_pitch.servo_out - (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out);
|
|
ch2 = g.channel_pitch.servo_out + (BOOL_TO_SIGN(g.reverse_elevons) * g.channel_roll.servo_out);
|
|
|
|
/* Differential Spoilers
|
|
If differential spoilers are setup, then we translate
|
|
rudder control into splitting of the two ailerons on
|
|
the side of the aircraft where we want to induce
|
|
additional drag.
|
|
*/
|
|
if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) {
|
|
float ch3 = ch1;
|
|
float ch4 = ch2;
|
|
if ( BOOL_TO_SIGN(g.reverse_elevons) * g.channel_rudder.servo_out < 0) {
|
|
ch1 += abs(g.channel_rudder.servo_out);
|
|
ch3 -= abs(g.channel_rudder.servo_out);
|
|
} else {
|
|
ch2 += abs(g.channel_rudder.servo_out);
|
|
ch4 -= abs(g.channel_rudder.servo_out);
|
|
}
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_dspoiler1, ch3);
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_dspoiler2, ch4);
|
|
}
|
|
|
|
// directly set the radio_out values for elevon mode
|
|
g.channel_roll.radio_out = elevon.trim1 + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0/ SERVO_MAX));
|
|
g.channel_pitch.radio_out = elevon.trim2 + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0/ SERVO_MAX));
|
|
}
|
|
|
|
#if OBC_FAILSAFE == ENABLED
|
|
// this is to allow the failsafe module to deliberately crash
|
|
// the plane. Only used in extreme circumstances to meet the
|
|
// OBC rules
|
|
if (obc.crash_plane()) {
|
|
g.channel_roll.servo_out = -4500;
|
|
g.channel_pitch.servo_out = -4500;
|
|
g.channel_rudder.servo_out = -4500;
|
|
g.channel_throttle.servo_out = 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
// push out the PWM values
|
|
if (g.mix_mode == 0) {
|
|
g.channel_roll.calc_pwm();
|
|
g.channel_pitch.calc_pwm();
|
|
}
|
|
g.channel_rudder.calc_pwm();
|
|
|
|
#if THROTTLE_OUT == 0
|
|
g.channel_throttle.servo_out = 0;
|
|
#else
|
|
// convert 0 to 100% into PWM
|
|
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out,
|
|
g.throttle_min.get(),
|
|
g.throttle_max.get());
|
|
|
|
if (suppress_throttle()) {
|
|
// throttle is suppressed in auto mode
|
|
g.channel_throttle.servo_out = 0;
|
|
if (g.throttle_suppress_manual) {
|
|
// manual pass through of throttle while throttle is suppressed
|
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
|
|
} else {
|
|
g.channel_throttle.calc_pwm();
|
|
}
|
|
} else if (g.throttle_passthru_stabilize &&
|
|
(control_mode == STABILIZE ||
|
|
control_mode == TRAINING ||
|
|
control_mode == FLY_BY_WIRE_A)) {
|
|
// manual pass through of throttle while in FBWA or
|
|
// STABILIZE mode with THR_PASS_STAB set
|
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
|
|
} else {
|
|
// normal throttle calculation based on servo_out
|
|
g.channel_throttle.calc_pwm();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Auto flap deployment
|
|
if(control_mode < FLY_BY_WIRE_B) {
|
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_flap_auto);
|
|
} else if (control_mode >= FLY_BY_WIRE_B) {
|
|
int16_t flapSpeedSource = 0;
|
|
|
|
// FIXME: use target_airspeed in both FBW_B and g.airspeed_enabled cases - Doug?
|
|
if (control_mode == FLY_BY_WIRE_B) {
|
|
flapSpeedSource = target_airspeed_cm * 0.01;
|
|
} else if (airspeed.use()) {
|
|
flapSpeedSource = g.airspeed_cruise_cm * 0.01;
|
|
} else {
|
|
flapSpeedSource = g.throttle_cruise;
|
|
}
|
|
if ( g.flap_1_speed != 0 && flapSpeedSource > g.flap_1_speed) {
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, 0);
|
|
} else if (g.flap_2_speed != 0 && flapSpeedSource > g.flap_2_speed) {
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, g.flap_1_percent);
|
|
} else {
|
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_flap_auto, g.flap_2_percent);
|
|
}
|
|
}
|
|
|
|
if (control_mode >= FLY_BY_WIRE_B) {
|
|
/* only do throttle slew limiting in modes where throttle
|
|
* control is automatic */
|
|
throttle_slew_limit(last_throttle);
|
|
}
|
|
|
|
if (control_mode == TRAINING) {
|
|
// copy rudder in training mode
|
|
g.channel_rudder.radio_out = g.channel_rudder.radio_in;
|
|
}
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
if (!g.hil_servos) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (g.vtail_output != VTAIL_DISABLED) {
|
|
vtail_output_mixing();
|
|
}
|
|
|
|
// send values to the PWM timers for output
|
|
// ----------------------------------------
|
|
hal.rcout->write(CH_1, g.channel_roll.radio_out); // send to Servos
|
|
hal.rcout->write(CH_2, g.channel_pitch.radio_out); // send to Servos
|
|
hal.rcout->write(CH_3, g.channel_throttle.radio_out); // send to Servos
|
|
hal.rcout->write(CH_4, g.channel_rudder.radio_out); // send to Servos
|
|
// Route configurable aux. functions to their respective servos
|
|
g.rc_5.output_ch(CH_5);
|
|
g.rc_6.output_ch(CH_6);
|
|
g.rc_7.output_ch(CH_7);
|
|
g.rc_8.output_ch(CH_8);
|
|
# if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
g.rc_9.output_ch(CH_9);
|
|
g.rc_10.output_ch(CH_10);
|
|
g.rc_11.output_ch(CH_11);
|
|
# endif
|
|
}
|
|
|
|
static bool demoing_servos;
|
|
|
|
static void demo_servos(uint8_t i) {
|
|
|
|
while(i > 0) {
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
|
|
demoing_servos = true;
|
|
servo_write(1, 1400);
|
|
mavlink_delay(400);
|
|
servo_write(1, 1600);
|
|
mavlink_delay(200);
|
|
servo_write(1, 1500);
|
|
demoing_servos = false;
|
|
mavlink_delay(400);
|
|
i--;
|
|
}
|
|
}
|
|
|
|
// return true if we should use airspeed for altitude/throttle control
|
|
static bool alt_control_airspeed(void)
|
|
{
|
|
return airspeed.use() && g.alt_control_algorithm == ALT_CONTROL_DEFAULT;
|
|
}
|