ardupilot/libraries/AP_BattMonitor/AP_BattMonitor_Backend.cpp
2024-02-06 11:01:02 +11:00

343 lines
13 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_BattMonitor_config.h"
#if AP_BATTERY_ENABLED
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_BattMonitor.h"
#include "AP_BattMonitor_Backend.h"
#if AP_BATTERY_ESC_TELEM_OUTBOUND_ENABLED
#include "AP_ESC_Telem/AP_ESC_Telem.h"
#endif
/*
base class constructor.
This incorporates initialisation as well.
*/
AP_BattMonitor_Backend::AP_BattMonitor_Backend(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state,
AP_BattMonitor_Params &params) :
_mon(mon),
_state(mon_state),
_params(params)
{
}
// capacity_remaining_pct - returns true if the battery % is available and writes to the percentage argument
// return false if the battery is unhealthy, does not have current monitoring, or the pack_capacity is too small
bool AP_BattMonitor_Backend::capacity_remaining_pct(uint8_t &percentage) const
{
// we consider anything under 10 mAh as being an invalid capacity and so will be our measurement of remaining capacity
if ( _params._pack_capacity <= 10) {
return false;
}
// the monitor must have current readings in order to estimate consumed_mah and be healthy
if (!has_current() || !_state.healthy) {
return false;
}
if (isnan(_state.consumed_mah) || _params._pack_capacity <= 0) {
return false;
}
const float mah_remaining = _params._pack_capacity - _state.consumed_mah;
percentage = constrain_float(100 * mah_remaining / _params._pack_capacity, 0, UINT8_MAX);
return true;
}
// update battery resistance estimate
// faster rates of change of the current and voltage readings cause faster updates to the resistance estimate
// the battery resistance is calculated by comparing the latest current and voltage readings to a low-pass filtered current and voltage
// high current steps are integrated into the resistance estimate by varying the time constant of the resistance filter
void AP_BattMonitor_Backend::update_resistance_estimate()
{
// return immediately if no current
if (!has_current() || !is_positive(_state.current_amps)) {
return;
}
// update maximum current seen since startup and protect against divide by zero
_current_max_amps = MAX(_current_max_amps, _state.current_amps);
float current_delta = _state.current_amps - _current_filt_amps;
if (is_zero(current_delta)) {
return;
}
// update reference voltage and current
if (_state.voltage > _resistance_voltage_ref) {
_resistance_voltage_ref = _state.voltage;
_resistance_current_ref = _state.current_amps;
}
// calculate time since last update
uint32_t now = AP_HAL::millis();
float loop_interval = (now - _resistance_timer_ms) * 0.001f;
_resistance_timer_ms = now;
// estimate short-term resistance
float filt_alpha = constrain_float(loop_interval/(loop_interval + AP_BATT_MONITOR_RES_EST_TC_1), 0.0f, 0.5f);
float resistance_alpha = MIN(1, AP_BATT_MONITOR_RES_EST_TC_2*fabsf((_state.current_amps-_current_filt_amps)/_current_max_amps));
float resistance_estimate = -(_state.voltage-_voltage_filt)/current_delta;
if (is_positive(resistance_estimate)) {
_state.resistance = _state.resistance*(1-resistance_alpha) + resistance_estimate*resistance_alpha;
}
// calculate maximum resistance
if ((_resistance_voltage_ref > _state.voltage) && (_state.current_amps > _resistance_current_ref)) {
float resistance_max = (_resistance_voltage_ref - _state.voltage) / (_state.current_amps - _resistance_current_ref);
_state.resistance = MIN(_state.resistance, resistance_max);
}
// update the filtered voltage and currents
_voltage_filt = _voltage_filt*(1-filt_alpha) + _state.voltage*filt_alpha;
_current_filt_amps = _current_filt_amps*(1-filt_alpha) + _state.current_amps*filt_alpha;
// update estimated voltage without sag
_state.voltage_resting_estimate = _state.voltage + _state.current_amps * _state.resistance;
}
// return true if state of health can be provided and fills in soh_pct argument
bool AP_BattMonitor_Backend::get_state_of_health_pct(uint8_t &soh_pct) const
{
if (!_state.has_state_of_health_pct) {
return false;
}
soh_pct = _state.state_of_health_pct;
return true;
}
float AP_BattMonitor_Backend::voltage_resting_estimate() const
{
// resting voltage should always be greater than or equal to the raw voltage
return MAX(_state.voltage, _state.voltage_resting_estimate);
}
AP_BattMonitor::Failsafe AP_BattMonitor_Backend::update_failsafes(void)
{
const uint32_t now = AP_HAL::millis();
bool low_voltage, low_capacity, critical_voltage, critical_capacity;
check_failsafe_types(low_voltage, low_capacity, critical_voltage, critical_capacity);
if (critical_voltage) {
// this is the first time our voltage has dropped below minimum so start timer
if (_state.critical_voltage_start_ms == 0) {
_state.critical_voltage_start_ms = now;
} else if (_params._low_voltage_timeout > 0 &&
now - _state.critical_voltage_start_ms > uint32_t(_params._low_voltage_timeout)*1000U) {
return AP_BattMonitor::Failsafe::Critical;
}
} else {
// acceptable voltage so reset timer
_state.critical_voltage_start_ms = 0;
}
if (critical_capacity) {
return AP_BattMonitor::Failsafe::Critical;
}
if (low_voltage) {
// this is the first time our voltage has dropped below minimum so start timer
if (_state.low_voltage_start_ms == 0) {
_state.low_voltage_start_ms = now;
} else if (_params._low_voltage_timeout > 0 &&
now - _state.low_voltage_start_ms > uint32_t(_params._low_voltage_timeout)*1000U) {
return AP_BattMonitor::Failsafe::Low;
}
} else {
// acceptable voltage so reset timer
_state.low_voltage_start_ms = 0;
}
if (low_capacity) {
return AP_BattMonitor::Failsafe::Low;
}
// if we've gotten this far then battery is ok
return AP_BattMonitor::Failsafe::None;
}
static bool update_check(size_t buflen, char *buffer, bool failed, const char *message)
{
if (failed) {
strncpy(buffer, message, buflen);
return false;
}
return true;
}
bool AP_BattMonitor_Backend::arming_checks(char * buffer, size_t buflen) const
{
bool low_voltage, low_capacity, critical_voltage, critical_capacity;
check_failsafe_types(low_voltage, low_capacity, critical_voltage, critical_capacity);
bool below_arming_voltage = is_positive(_params._arming_minimum_voltage) &&
(_state.voltage < _params._arming_minimum_voltage);
bool below_arming_capacity = (_params._arming_minimum_capacity > 0) &&
((_params._pack_capacity - _state.consumed_mah) < _params._arming_minimum_capacity);
bool fs_capacity_inversion = is_positive(_params._critical_capacity) &&
is_positive(_params._low_capacity) &&
!(_params._low_capacity > _params._critical_capacity);
bool fs_voltage_inversion = is_positive(_params._critical_voltage) &&
is_positive(_params._low_voltage) &&
!(_params._low_voltage > _params._critical_voltage);
bool result = update_check(buflen, buffer, !_state.healthy, "unhealthy");
result = result && update_check(buflen, buffer, below_arming_voltage, "below minimum arming voltage");
result = result && update_check(buflen, buffer, below_arming_capacity, "below minimum arming capacity");
result = result && update_check(buflen, buffer, low_voltage, "low voltage failsafe");
result = result && update_check(buflen, buffer, low_capacity, "low capacity failsafe");
result = result && update_check(buflen, buffer, critical_voltage, "critical voltage failsafe");
result = result && update_check(buflen, buffer, critical_capacity, "critical capacity failsafe");
result = result && update_check(buflen, buffer, fs_capacity_inversion, "capacity failsafe critical >= low");
result = result && update_check(buflen, buffer, fs_voltage_inversion, "voltage failsafe critical >= low");
return result;
}
void AP_BattMonitor_Backend::check_failsafe_types(bool &low_voltage, bool &low_capacity, bool &critical_voltage, bool &critical_capacity) const
{
// use voltage or sag compensated voltage
float voltage_used;
switch (_params.failsafe_voltage_source()) {
case AP_BattMonitor_Params::BattMonitor_LowVoltageSource_Raw:
default:
voltage_used = _state.voltage;
break;
case AP_BattMonitor_Params::BattMonitor_LowVoltageSource_SagCompensated:
voltage_used = voltage_resting_estimate();
break;
}
// check critical battery levels
if ((voltage_used > 0) && (_params._critical_voltage > 0) && (voltage_used < _params._critical_voltage)) {
critical_voltage = true;
} else {
critical_voltage = false;
}
// check capacity failsafe if current monitoring is enabled
if (has_current() && (_params._critical_capacity > 0) &&
((_params._pack_capacity - _state.consumed_mah) < _params._critical_capacity)) {
critical_capacity = true;
} else {
critical_capacity = false;
}
if ((voltage_used > 0) && (_params._low_voltage > 0) && (voltage_used < _params._low_voltage)) {
low_voltage = true;
} else {
low_voltage = false;
}
// check capacity if current monitoring is enabled
if (has_current() && (_params._low_capacity > 0) &&
((_params._pack_capacity - _state.consumed_mah) < _params._low_capacity)) {
low_capacity = true;
} else {
low_capacity = false;
}
}
#if AP_BATTERY_ESC_TELEM_OUTBOUND_ENABLED
void AP_BattMonitor_Backend::update_esc_telem_outbound()
{
const uint8_t esc_index = _params._esc_telem_outbound_index;
if (esc_index == 0 || !_state.healthy) {
// Disabled if there's no ESC identified to route the data to or if the battery is unhealthy
return;
}
AP_ESC_Telem_Backend::TelemetryData telem {};
uint16_t type = AP_ESC_Telem_Backend::TelemetryType::VOLTAGE;
telem.voltage = _state.voltage; // all battery backends have voltage
if (has_current()) {
telem.current = _state.current_amps;
type |= AP_ESC_Telem_Backend::TelemetryType::CURRENT;
}
if (has_consumed_energy()) {
telem.consumption_mah = _state.consumed_mah;
type |= AP_ESC_Telem_Backend::TelemetryType::CONSUMPTION;
}
float temperature_c;
if (_mon.get_temperature(temperature_c, _state.instance)) {
// get the temperature from the frontend so we check for external temperature
telem.temperature_cdeg = temperature_c * 100;
type |= AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE;
}
AP::esc_telem().update_telem_data(esc_index-1, telem, type);
}
#endif
// returns true if battery monitor provides temperature
bool AP_BattMonitor_Backend::get_temperature(float &temperature) const
{
#if AP_TEMPERATURE_SENSOR_ENABLED
if (_state.temperature_external_use) {
temperature = _state.temperature_external;
return true;
}
#endif
temperature = _state.temperature;
return has_temperature();
}
/*
default implementation for reset_remaining(). This sets consumed_wh
and consumed_mah based on the given percentage. Use percentage=100
for a full battery
*/
bool AP_BattMonitor_Backend::reset_remaining(float percentage)
{
percentage = constrain_float(percentage, 0, 100);
const float used_proportion = (100.0f - percentage) * 0.01f;
_state.consumed_mah = used_proportion * _params._pack_capacity;
// without knowing the history we can't do consumed_wh
// accurately. Best estimate is based on current voltage. This
// will be good when resetting the battery to a value close to
// full charge
_state.consumed_wh = _state.consumed_mah * 0.001f * _state.voltage;
// reset failsafe state for this backend
_state.failsafe = update_failsafes();
return true;
}
/*
update consumed mAh and Wh
*/
void AP_BattMonitor_Backend::update_consumed(AP_BattMonitor::BattMonitor_State &state, uint32_t dt_us)
{
// update total current drawn since startup
if (state.last_time_micros != 0 && dt_us < 2000000) {
const float mah = calculate_mah(state.current_amps, dt_us);
state.consumed_mah += mah;
state.consumed_wh += 0.001 * mah * state.voltage;
}
}
#endif // AP_BATTERY_ENABLED