ardupilot/libraries/AP_HAL_Linux/Scheduler.cpp

396 lines
9.6 KiB
C++

#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "Scheduler.h"
#include "Storage.h"
#include "RCInput.h"
#include "UARTDriver.h"
#include "Util.h"
#include <sys/time.h>
#include <poll.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sys/mman.h>
using namespace Linux;
extern const AP_HAL::HAL& hal;
#define APM_LINUX_TIMER_PRIORITY 15
#define APM_LINUX_UART_PRIORITY 14
#define APM_LINUX_RCIN_PRIORITY 13
#define APM_LINUX_MAIN_PRIORITY 12
#define APM_LINUX_TONEALARM_PRIORITY 11
#define APM_LINUX_IO_PRIORITY 10
LinuxScheduler::LinuxScheduler()
{}
typedef void *(*pthread_startroutine_t)(void *);
/*
setup for realtime. Lock all of memory in the thread and pre-fault
the given stack size, so stack faults don't cause timing jitter
*/
void LinuxScheduler::_setup_realtime(uint32_t size)
{
uint8_t dummy[size];
mlockall(MCL_CURRENT|MCL_FUTURE);
memset(dummy, 0, sizeof(dummy));
}
void LinuxScheduler::init(void* machtnichts)
{
clock_gettime(CLOCK_MONOTONIC, &_sketch_start_time);
_setup_realtime(32768);
pthread_attr_t thread_attr;
struct sched_param param;
memset(&param, 0, sizeof(param));
param.sched_priority = APM_LINUX_MAIN_PRIORITY;
sched_setscheduler(0, SCHED_FIFO, &param);
param.sched_priority = APM_LINUX_TIMER_PRIORITY;
pthread_attr_init(&thread_attr);
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_timer_thread_ctx, &thread_attr, (pthread_startroutine_t)&Linux::LinuxScheduler::_timer_thread, this);
// the UART thread runs at a medium priority
pthread_attr_init(&thread_attr);
param.sched_priority = APM_LINUX_UART_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_uart_thread_ctx, &thread_attr, (pthread_startroutine_t)&Linux::LinuxScheduler::_uart_thread, this);
// the RCIN thread runs at a lower medium priority
pthread_attr_init(&thread_attr);
param.sched_priority = APM_LINUX_RCIN_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_rcin_thread_ctx, &thread_attr, (pthread_startroutine_t)&Linux::LinuxScheduler::_rcin_thread, this);
// the Tone Alarm thread runs at highest priority
param.sched_priority = APM_LINUX_TONEALARM_PRIORITY;
pthread_attr_init(&thread_attr);
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_tonealarm_thread_ctx, &thread_attr, (pthread_startroutine_t)&Linux::LinuxScheduler::_tonealarm_thread, this);
// the IO thread runs at lower priority
pthread_attr_init(&thread_attr);
param.sched_priority = APM_LINUX_IO_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_io_thread_ctx, &thread_attr, (pthread_startroutine_t)&Linux::LinuxScheduler::_io_thread, this);
}
void LinuxScheduler::_microsleep(uint32_t usec)
{
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = usec*1000UL;
while (nanosleep(&ts, &ts) == -1 && errno == EINTR) ;
}
void LinuxScheduler::delay(uint16_t ms)
{
if (stopped_clock_usec) {
stopped_clock_usec += 1000UL*ms;
return;
}
uint64_t start = millis64();
while ((millis64() - start) < ms) {
// this yields the CPU to other apps
_microsleep(1000);
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
}
uint64_t LinuxScheduler::millis64()
{
if (stopped_clock_usec) {
return stopped_clock_usec/1000;
}
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return 1.0e3*((ts.tv_sec + (ts.tv_nsec*1.0e-9)) -
(_sketch_start_time.tv_sec +
(_sketch_start_time.tv_nsec*1.0e-9)));
}
uint64_t LinuxScheduler::micros64()
{
if (stopped_clock_usec) {
return stopped_clock_usec;
}
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return 1.0e6*((ts.tv_sec + (ts.tv_nsec*1.0e-9)) -
(_sketch_start_time.tv_sec +
(_sketch_start_time.tv_nsec*1.0e-9)));
}
uint32_t LinuxScheduler::millis()
{
return millis64() & 0xFFFFFFFF;
}
uint32_t LinuxScheduler::micros()
{
return micros64() & 0xFFFFFFFF;
}
void LinuxScheduler::delay_microseconds(uint16_t us)
{
_microsleep(us);
}
void LinuxScheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms)
{
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void LinuxScheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < LINUX_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
}
void LinuxScheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < LINUX_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void LinuxScheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void LinuxScheduler::suspend_timer_procs()
{
if (!_timer_semaphore.take(0)) {
printf("Failed to take timer semaphore\n");
}
}
void LinuxScheduler::resume_timer_procs()
{
_timer_semaphore.give();
}
void LinuxScheduler::_run_timers(bool called_from_timer_thread)
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
if (!_timer_semaphore.take(0)) {
printf("Failed to take timer semaphore in _run_timers\n");
}
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] != NULL) {
_timer_proc[i]();
}
}
_timer_semaphore.give();
// and the failsafe, if one is setup
if (_failsafe != NULL) {
_failsafe();
}
_in_timer_proc = false;
}
void *LinuxScheduler::_timer_thread(void)
{
_setup_realtime(32768);
while (system_initializing()) {
poll(NULL, 0, 1);
}
/*
this aims to run at an average of 1kHz, so that it can be used
to drive 1kHz processes without drift
*/
uint64_t next_run_usec = micros64() + 1000;
while (true) {
uint64_t dt = next_run_usec - micros64();
if (dt > 2000) {
// we've lost sync - restart
next_run_usec = micros64();
} else {
_microsleep(dt);
}
next_run_usec += 1000;
// run registered timers
_run_timers(true);
}
return NULL;
}
void LinuxScheduler::_run_io(void)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] != NULL) {
_io_proc[i]();
}
}
_in_io_proc = false;
}
void *LinuxScheduler::_rcin_thread(void)
{
_setup_realtime(32768);
while (system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
_microsleep(10000);
((LinuxRCInput *)hal.rcin)->_timer_tick();
}
return NULL;
}
void *LinuxScheduler::_uart_thread(void)
{
_setup_realtime(32768);
while (system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
_microsleep(10000);
// process any pending serial bytes
((LinuxUARTDriver *)hal.uartA)->_timer_tick();
((LinuxUARTDriver *)hal.uartB)->_timer_tick();
((LinuxUARTDriver *)hal.uartC)->_timer_tick();
}
return NULL;
}
void *LinuxScheduler::_tonealarm_thread(void)
{
_setup_realtime(32768);
while (system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
_microsleep(20000);
// process tone command
((LinuxUtil *)hal.util)->_toneAlarm_timer_tick();
}
return NULL;
}
void *LinuxScheduler::_io_thread(void)
{
_setup_realtime(32768);
while (system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
_microsleep(20000);
// process any pending storage writes
((LinuxStorage *)hal.storage)->_timer_tick();
// run registered IO processes
_run_io();
}
return NULL;
}
void LinuxScheduler::panic(const prog_char_t *errormsg)
{
write(1, errormsg, strlen(errormsg));
write(1, "\n", 1);
hal.scheduler->delay_microseconds(10000);
exit(1);
}
bool LinuxScheduler::in_timerprocess()
{
return _in_timer_proc;
}
void LinuxScheduler::begin_atomic()
{}
void LinuxScheduler::end_atomic()
{}
bool LinuxScheduler::system_initializing() {
return !_initialized;
}
void LinuxScheduler::system_initialized()
{
if (_initialized) {
panic("PANIC: scheduler::system_initialized called more than once");
}
_initialized = true;
}
void LinuxScheduler::reboot(bool hold_in_bootloader)
{
exit(1);
}
void LinuxScheduler::stop_clock(uint64_t time_usec)
{
stopped_clock_usec = time_usec;
}
#endif // CONFIG_HAL_BOARD