ardupilot/ArduPlane/Attitude.pde
2011-09-22 20:50:15 -06:00

368 lines
13 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//****************************************************************
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
//****************************************************************
static void stabilize()
{
float ch1_inf = 1.0;
float ch2_inf = 1.0;
float ch4_inf = 1.0;
float speed_scaler;
if (g.airspeed_enabled == true){
if(airspeed > 0)
speed_scaler = (STANDARD_SPEED * 100) / airspeed;
else
speed_scaler = 2.0;
speed_scaler = constrain(speed_scaler, 0.5, 2.0);
} else {
if (g.channel_throttle.servo_out > 0){
speed_scaler = 0.5 + ((float)THROTTLE_CRUISE / g.channel_throttle.servo_out / 2.0); // First order taylor expansion of square root
// Should maybe be to the 2/7 power, but we aren't goint to implement that...
}else{
speed_scaler = 1.67;
}
speed_scaler = constrain(speed_scaler, 0.6, 1.67); // This case is constrained tighter as we don't have real speed info
}
if(crash_timer > 0){
nav_roll = 0;
}
if (inverted_flight) {
// we want to fly upside down. We need to cope with wrap of
// the roll_sensor interfering with wrap of nav_roll, which
// would really confuse the PID code. The easiest way to
// handle this is to ensure both go in the same direction from
// zero
nav_roll += 18000;
if (dcm.roll_sensor < 0) nav_roll -= 36000;
}
// For Testing Only
// roll_sensor = (radio_in[CH_RUDDER] - radio_trim[CH_RUDDER]) * 10;
// Serial.printf_P(PSTR(" roll_sensor "));
// Serial.print(roll_sensor,DEC);
// Calculate dersired servo output for the roll
// ---------------------------------------------
g.channel_roll.servo_out = g.pidServoRoll.get_pid((nav_roll - dcm.roll_sensor), delta_ms_fast_loop, speed_scaler);
long tempcalc = nav_pitch +
fabs(dcm.roll_sensor * g.kff_pitch_compensation) +
(g.channel_throttle.servo_out * g.kff_throttle_to_pitch) -
(dcm.pitch_sensor - g.pitch_trim);
if (inverted_flight) {
// when flying upside down the elevator control is inverted
tempcalc = -tempcalc;
}
g.channel_pitch.servo_out = g.pidServoPitch.get_pid(tempcalc, delta_ms_fast_loop, speed_scaler);
// Mix Stick input to allow users to override control surfaces
// -----------------------------------------------------------
if ((control_mode < FLY_BY_WIRE_A) || (ENABLE_STICK_MIXING == 1 && control_mode > FLY_BY_WIRE_B && failsafe == FAILSAFE_NONE)) {
// TODO: use RC_Channel control_mix function?
ch1_inf = (float)g.channel_roll.radio_in - (float)g.channel_roll.radio_trim;
ch1_inf = fabs(ch1_inf);
ch1_inf = min(ch1_inf, 400.0);
ch1_inf = ((400.0 - ch1_inf) /400.0);
ch2_inf = (float)g.channel_pitch.radio_in - g.channel_pitch.radio_trim;
ch2_inf = fabs(ch2_inf);
ch2_inf = min(ch2_inf, 400.0);
ch2_inf = ((400.0 - ch2_inf) /400.0);
// scale the sensor input based on the stick input
// -----------------------------------------------
g.channel_roll.servo_out *= ch1_inf;
g.channel_pitch.servo_out *= ch2_inf;
// Mix in stick inputs
// -------------------
g.channel_roll.servo_out += g.channel_roll.pwm_to_angle();
g.channel_pitch.servo_out += g.channel_pitch.pwm_to_angle();
//Serial.printf_P(PSTR(" servo_out[CH_ROLL] "));
//Serial.println(servo_out[CH_ROLL],DEC);
}
// stick mixing performed for rudder for all cases including FBW unless disabled for higher modes
// important for steering on the ground during landing
// -----------------------------------------------
if (control_mode <= FLY_BY_WIRE_B || (ENABLE_STICK_MIXING == 1 && failsafe == FAILSAFE_NONE)) {
ch4_inf = (float)g.channel_rudder.radio_in - (float)g.channel_rudder.radio_trim;
ch4_inf = fabs(ch4_inf);
ch4_inf = min(ch4_inf, 400.0);
ch4_inf = ((400.0 - ch4_inf) /400.0);
}
// Apply output to Rudder
// ----------------------
calc_nav_yaw(speed_scaler);
g.channel_rudder.servo_out *= ch4_inf;
g.channel_rudder.servo_out += g.channel_rudder.pwm_to_angle();
// Call slew rate limiter if used
// ------------------------------
//#if(ROLL_SLEW_LIMIT != 0)
// g.channel_roll.servo_out = roll_slew_limit(g.channel_roll.servo_out);
//#endif
}
static void crash_checker()
{
if(dcm.pitch_sensor < -4500){
crash_timer = 255;
}
if(crash_timer > 0)
crash_timer--;
}
static void calc_throttle()
{
if (g.airspeed_enabled == false) {
int throttle_target = g.throttle_cruise + throttle_nudge;
// no airspeed sensor, we use nav pitch to determine the proper throttle output
// AUTO, RTL, etc
// ---------------------------------------------------------------------------
if (nav_pitch >= 0) {
g.channel_throttle.servo_out = throttle_target + (g.throttle_max - throttle_target) * nav_pitch / g.pitch_limit_max;
} else {
g.channel_throttle.servo_out = throttle_target - (throttle_target - g.throttle_min) * nav_pitch / g.pitch_limit_min;
}
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
} else {
// throttle control with airspeed compensation
// -------------------------------------------
energy_error = airspeed_energy_error + (float)altitude_error * 0.098f;
// positive energy errors make the throttle go higher
g.channel_throttle.servo_out = g.throttle_cruise + g.pidTeThrottle.get_pid(energy_error, dTnav);
g.channel_throttle.servo_out += (g.channel_pitch.servo_out * g.kff_pitch_to_throttle);
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out,
g.throttle_min.get(), g.throttle_max.get()); // TODO - resolve why "saved" is used here versus "current"
}
}
/*****************************************
* Calculate desired roll/pitch/yaw angles (in medium freq loop)
*****************************************/
// Yaw is separated into a function for future implementation of heading hold on rolling take-off
// ----------------------------------------------------------------------------------------
static void calc_nav_yaw(float speed_scaler)
{
#if HIL_MODE != HIL_MODE_ATTITUDE
Vector3f temp = imu.get_accel();
long error = -temp.y;
// Control is a feedforward from the aileron control + a PID to coordinate the turn (drive y axis accel to zero)
g.channel_rudder.servo_out = g.kff_rudder_mix * g.channel_roll.servo_out + g.pidServoRudder.get_pid(error, delta_ms_fast_loop, speed_scaler);
#else
g.channel_rudder.servo_out = g.kff_rudder_mix * g.channel_roll.servo_out;
// XXX probably need something here based on heading
#endif
}
static void calc_nav_pitch()
{
// Calculate the Pitch of the plane
// --------------------------------
if (g.airspeed_enabled == true) {
nav_pitch = -g.pidNavPitchAirspeed.get_pid(airspeed_error, dTnav);
} else {
nav_pitch = g.pidNavPitchAltitude.get_pid(altitude_error, dTnav);
}
nav_pitch = constrain(nav_pitch, g.pitch_limit_min.get(), g.pitch_limit_max.get());
}
#define YAW_DAMPENER 0
static void calc_nav_roll()
{
// Adjust gain based on ground speed - We need lower nav gain going in to a headwind, etc.
// This does not make provisions for wind speed in excess of airframe speed
nav_gain_scaler = (float)g_gps->ground_speed / (STANDARD_SPEED * 100.0);
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4);
// negative error = left turn
// positive error = right turn
// Calculate the required roll of the plane
// ----------------------------------------
nav_roll = g.pidNavRoll.get_pid(bearing_error, dTnav, nav_gain_scaler); //returns desired bank angle in degrees*100
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
Vector3f omega;
omega = dcm.get_gyro();
// rate limiter
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -6000, 6000); // limit input
int dampener = rate * YAW_DAMPENER; // 34377 * .175 = 6000
// add in yaw dampener
nav_roll -= dampener;
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
}
/*****************************************
* Roll servo slew limit
*****************************************/
/*
float roll_slew_limit(float servo)
{
static float last;
float temp = constrain(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f);
last = servo;
return temp;
}*/
/*****************************************
* Throttle slew limit
*****************************************/
static void throttle_slew_limit()
{
static int last = 1000;
if(g.throttle_slewrate) { // if slew limit rate is set to zero then do not slew limit
float temp = g.throttle_slewrate * G_Dt * 10.f; // * 10 to scale % to pwm range of 1000 to 2000
Serial.print("radio "); Serial.print(g.channel_throttle.radio_out); Serial.print(" temp "); Serial.print(temp); Serial.print(" last "); Serial.println(last);
g.channel_throttle.radio_out = constrain(g.channel_throttle.radio_out, last - (int)temp, last + (int)temp);
last = g.channel_throttle.radio_out;
}
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
static void reset_I(void)
{
g.pidNavRoll.reset_I();
g.pidNavPitchAirspeed.reset_I();
g.pidNavPitchAltitude.reset_I();
g.pidTeThrottle.reset_I();
// g.pidAltitudeThrottle.reset_I();
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
static void set_servos(void)
{
int flapSpeedSource = 0;
if(control_mode == MANUAL){
// do a direct pass through of radio values
if (g.mix_mode == 0){
g.channel_roll.radio_out = g.channel_roll.radio_in;
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
} else {
g.channel_roll.radio_out = APM_RC.InputCh(CH_ROLL);
g.channel_pitch.radio_out = APM_RC.InputCh(CH_PITCH);
}
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
g.channel_rudder.radio_out = g.channel_rudder.radio_in;
G_RC_AUX(k_aileron)->radio_out = g_rc_function[RC_Channel_aux::k_aileron]->radio_in;
G_RC_AUX(k_flap_auto)->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_in;
} else {
if (g.mix_mode == 0) {
g.channel_roll.calc_pwm();
g.channel_pitch.calc_pwm();
g.channel_rudder.calc_pwm();
if (g_rc_function[RC_Channel_aux::k_aileron]) {
g_rc_function[RC_Channel_aux::k_aileron]->servo_out = g.channel_roll.servo_out;
g_rc_function[RC_Channel_aux::k_aileron]->calc_pwm();
}
}else{
/*Elevon mode*/
float ch1;
float ch2;
ch1 = BOOL_TO_SIGN(g.reverse_elevons) * (g.channel_pitch.servo_out - g.channel_roll.servo_out);
ch2 = g.channel_pitch.servo_out + g.channel_roll.servo_out;
g.channel_roll.radio_out = elevon1_trim + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0/ SERVO_MAX));
g.channel_pitch.radio_out = elevon2_trim + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0/ SERVO_MAX));
}
#if THROTTLE_OUT == 0
g.channel_throttle.servo_out = 0;
#else
// convert 0 to 100% into PWM
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
#endif
g.channel_throttle.calc_pwm();
/* TO DO - fix this for RC_Channel library
#if THROTTLE_REVERSE == 1
radio_out[CH_THROTTLE] = radio_max(CH_THROTTLE) + radio_min(CH_THROTTLE) - radio_out[CH_THROTTLE];
#endif
*/
throttle_slew_limit();
}
if(control_mode < FLY_BY_WIRE_B) {
G_RC_AUX(k_flap_auto)->radio_out = g_rc_function[RC_Channel_aux::k_flap_auto]->radio_in;
} else if (control_mode >= FLY_BY_WIRE_B) {
if (g.airspeed_enabled == true) {
flapSpeedSource = g.airspeed_cruise/100;
} else {
flapSpeedSource = g.throttle_cruise;
}
if ( flapSpeedSource > g.flap_1_speed) {
G_RC_AUX(k_flap_auto)->servo_out = 0;
} else if (flapSpeedSource > g.flap_2_speed) {
G_RC_AUX(k_flap_auto)->servo_out = g.flap_1_percent;
} else {
G_RC_AUX(k_flap_auto)->servo_out = g.flap_2_percent;
}
g_rc_function[RC_Channel_aux::k_flap_auto]->calc_pwm();
}
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
// send values to the PWM timers for output
// ----------------------------------------
APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos
// Route configurable aux. functions to their respective servos
g.rc_5.output_ch(CH_5);
g.rc_6.output_ch(CH_6);
g.rc_7.output_ch(CH_7);
g.rc_8.output_ch(CH_8);
#endif
}
static void demo_servos(byte i) {
while(i > 0){
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
APM_RC.OutputCh(1, 1400);
mavlink_delay(400);
APM_RC.OutputCh(1, 1600);
mavlink_delay(200);
APM_RC.OutputCh(1, 1500);
#endif
mavlink_delay(400);
i--;
}
}