mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 02:48:28 -04:00
23ae607c6c
this stops us using uninitialised values in modes like circle which can operate either with or without RC input. If we didn't have a RC receiver attached then they would use a maximum yaw rate (which produces quite a spectacular result for a tuned up racing quad)
253 lines
8.9 KiB
C++
253 lines
8.9 KiB
C++
#include "Copter.h"
|
|
|
|
// transform pilot's yaw input into a desired yaw rate
|
|
// returns desired yaw rate in centi-degrees per second
|
|
float Copter::get_pilot_desired_yaw_rate(int16_t stick_angle)
|
|
{
|
|
// throttle failsafe check
|
|
if (failsafe.radio || !ap.rc_receiver_present) {
|
|
return 0.0f;
|
|
}
|
|
float yaw_request;
|
|
|
|
// calculate yaw rate request
|
|
if (g2.acro_y_expo <= 0) {
|
|
yaw_request = stick_angle * g.acro_yaw_p;
|
|
} else {
|
|
// expo variables
|
|
float y_in, y_in3, y_out;
|
|
|
|
// range check expo
|
|
if (g2.acro_y_expo > 1.0f || g2.acro_y_expo < 0.5f) {
|
|
g2.acro_y_expo = 1.0f;
|
|
}
|
|
|
|
// yaw expo
|
|
y_in = float(stick_angle)/ROLL_PITCH_YAW_INPUT_MAX;
|
|
y_in3 = y_in*y_in*y_in;
|
|
y_out = (g2.acro_y_expo * y_in3) + ((1.0f - g2.acro_y_expo) * y_in);
|
|
yaw_request = ROLL_PITCH_YAW_INPUT_MAX * y_out * g.acro_yaw_p;
|
|
}
|
|
// convert pilot input to the desired yaw rate
|
|
return yaw_request;
|
|
}
|
|
|
|
/*************************************************************
|
|
* throttle control
|
|
****************************************************************/
|
|
|
|
// update estimated throttle required to hover (if necessary)
|
|
// called at 100hz
|
|
void Copter::update_throttle_hover()
|
|
{
|
|
#if FRAME_CONFIG != HELI_FRAME
|
|
// if not armed or landed exit
|
|
if (!motors->armed() || ap.land_complete) {
|
|
return;
|
|
}
|
|
|
|
// do not update in manual throttle modes or Drift
|
|
if (flightmode->has_manual_throttle() || (control_mode == Mode::Number::DRIFT)) {
|
|
return;
|
|
}
|
|
|
|
// do not update while climbing or descending
|
|
if (!is_zero(pos_control->get_desired_velocity().z)) {
|
|
return;
|
|
}
|
|
|
|
// get throttle output
|
|
float throttle = motors->get_throttle();
|
|
|
|
// calc average throttle if we are in a level hover
|
|
if (throttle > 0.0f && fabsf(inertial_nav.get_velocity_z()) < 60 &&
|
|
labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) {
|
|
// Can we set the time constant automatically
|
|
motors->update_throttle_hover(0.01f);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared
|
|
void Copter::set_throttle_takeoff()
|
|
{
|
|
// tell position controller to reset alt target and reset I terms
|
|
pos_control->init_takeoff();
|
|
}
|
|
|
|
// get_pilot_desired_climb_rate - transform pilot's throttle input to climb rate in cm/s
|
|
// without any deadzone at the bottom
|
|
float Copter::get_pilot_desired_climb_rate(float throttle_control)
|
|
{
|
|
// throttle failsafe check
|
|
if (failsafe.radio || !ap.rc_receiver_present) {
|
|
return 0.0f;
|
|
}
|
|
|
|
#if TOY_MODE_ENABLED == ENABLED
|
|
if (g2.toy_mode.enabled()) {
|
|
// allow throttle to be reduced after throttle arming and for
|
|
// slower descent close to the ground
|
|
g2.toy_mode.throttle_adjust(throttle_control);
|
|
}
|
|
#endif
|
|
|
|
float desired_rate = 0.0f;
|
|
float mid_stick = get_throttle_mid();
|
|
float deadband_top = mid_stick + g.throttle_deadzone;
|
|
float deadband_bottom = mid_stick - g.throttle_deadzone;
|
|
|
|
// ensure a reasonable throttle value
|
|
throttle_control = constrain_float(throttle_control,0.0f,1000.0f);
|
|
|
|
// ensure a reasonable deadzone
|
|
g.throttle_deadzone = constrain_int16(g.throttle_deadzone, 0, 400);
|
|
|
|
// check throttle is above, below or in the deadband
|
|
if (throttle_control < deadband_bottom) {
|
|
// below the deadband
|
|
desired_rate = get_pilot_speed_dn() * (throttle_control-deadband_bottom) / deadband_bottom;
|
|
} else if (throttle_control > deadband_top) {
|
|
// above the deadband
|
|
desired_rate = g.pilot_speed_up * (throttle_control-deadband_top) / (1000.0f-deadband_top);
|
|
} else {
|
|
// must be in the deadband
|
|
desired_rate = 0.0f;
|
|
}
|
|
|
|
return desired_rate;
|
|
}
|
|
|
|
// get_non_takeoff_throttle - a throttle somewhere between min and mid throttle which should not lead to a takeoff
|
|
float Copter::get_non_takeoff_throttle()
|
|
{
|
|
return MAX(0,motors->get_throttle_hover()/2.0f);
|
|
}
|
|
|
|
// adjust_climb_rate - hold copter at the desired distance above the
|
|
// ground; returns climb rate (in cm/s) which should be passed to
|
|
// the position controller
|
|
float Copter::SurfaceTracking::adjust_climb_rate(float target_rate)
|
|
{
|
|
#if RANGEFINDER_ENABLED == ENABLED
|
|
if (!copter.rangefinder_alt_ok()) {
|
|
// if rangefinder is not ok, do not use surface tracking
|
|
return target_rate;
|
|
}
|
|
|
|
const float current_alt = copter.inertial_nav.get_altitude();
|
|
const float current_alt_target = copter.pos_control->get_alt_target();
|
|
float distance_error;
|
|
float velocity_correction;
|
|
|
|
uint32_t now = millis();
|
|
|
|
valid_for_logging = true;
|
|
|
|
// reset target altitude if this controller has just been engaged
|
|
if (now - last_update_ms > SURFACE_TRACKING_TIMEOUT_MS) {
|
|
target_alt_cm = copter.rangefinder_state.alt_cm + current_alt_target - current_alt;
|
|
}
|
|
last_update_ms = now;
|
|
|
|
// adjust rangefinder target alt if motors have not hit their limits
|
|
if ((target_rate<0 && !copter.motors->limit.throttle_lower) || (target_rate>0 && !copter.motors->limit.throttle_upper)) {
|
|
target_alt_cm += target_rate * copter.G_Dt;
|
|
}
|
|
|
|
/*
|
|
handle rangefinder glitches. When we get a rangefinder reading
|
|
more than RANGEFINDER_GLITCH_ALT_CM different from the current
|
|
rangefinder reading then we consider it a glitch and reject
|
|
until we get RANGEFINDER_GLITCH_NUM_SAMPLES samples in a
|
|
row. When that happens we reset the target altitude to the new
|
|
reading
|
|
*/
|
|
int32_t glitch_cm = copter.rangefinder_state.alt_cm - target_alt_cm;
|
|
if (glitch_cm >= RANGEFINDER_GLITCH_ALT_CM) {
|
|
copter.rangefinder_state.glitch_count = MAX(copter.rangefinder_state.glitch_count+1,1);
|
|
} else if (glitch_cm <= -RANGEFINDER_GLITCH_ALT_CM) {
|
|
copter.rangefinder_state.glitch_count = MIN(copter.rangefinder_state.glitch_count-1,-1);
|
|
} else {
|
|
copter.rangefinder_state.glitch_count = 0;
|
|
}
|
|
if (abs(copter.rangefinder_state.glitch_count) >= RANGEFINDER_GLITCH_NUM_SAMPLES) {
|
|
// shift to the new rangefinder reading
|
|
target_alt_cm = copter.rangefinder_state.alt_cm;
|
|
copter.rangefinder_state.glitch_count = 0;
|
|
}
|
|
if (copter.rangefinder_state.glitch_count != 0) {
|
|
// we are currently glitching, just use the target rate
|
|
return target_rate;
|
|
}
|
|
|
|
// calc desired velocity correction from target rangefinder alt vs actual rangefinder alt (remove the error already passed to Altitude controller to avoid oscillations)
|
|
distance_error = (target_alt_cm - copter.rangefinder_state.alt_cm) - (current_alt_target - current_alt);
|
|
velocity_correction = distance_error * copter.g.rangefinder_gain;
|
|
velocity_correction = constrain_float(velocity_correction, -SURFACE_TRACKING_VELZ_MAX, SURFACE_TRACKING_VELZ_MAX);
|
|
|
|
// return combined pilot climb rate + rate to correct rangefinder alt error
|
|
return (target_rate + velocity_correction);
|
|
#else
|
|
return target_rate;
|
|
#endif
|
|
}
|
|
|
|
// get surfacing tracking alt
|
|
// returns true if there is a valid target
|
|
bool Copter::SurfaceTracking::get_target_alt_cm(float &_target_alt_cm) const
|
|
{
|
|
// check target has been updated recently
|
|
if (AP_HAL::millis() - last_update_ms > SURFACE_TRACKING_TIMEOUT_MS) {
|
|
return false;
|
|
}
|
|
_target_alt_cm = target_alt_cm;
|
|
return true;
|
|
}
|
|
|
|
// set surface tracking target altitude
|
|
void Copter::SurfaceTracking::set_target_alt_cm(float _target_alt_cm)
|
|
{
|
|
target_alt_cm = _target_alt_cm;
|
|
last_update_ms = AP_HAL::millis();
|
|
}
|
|
|
|
// get target climb rate reduced to avoid obstacles and altitude fence
|
|
float Copter::get_avoidance_adjusted_climbrate(float target_rate)
|
|
{
|
|
#if AC_AVOID_ENABLED == ENABLED
|
|
avoid.adjust_velocity_z(pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z(), target_rate, G_Dt);
|
|
return target_rate;
|
|
#else
|
|
return target_rate;
|
|
#endif
|
|
}
|
|
|
|
// set_accel_throttle_I_from_pilot_throttle - smoothes transition from pilot controlled throttle to autopilot throttle
|
|
void Copter::set_accel_throttle_I_from_pilot_throttle()
|
|
{
|
|
// get last throttle input sent to attitude controller
|
|
float pilot_throttle = constrain_float(attitude_control->get_throttle_in(), 0.0f, 1.0f);
|
|
// shift difference between pilot's throttle and hover throttle into accelerometer I
|
|
pos_control->get_accel_z_pid().set_integrator((pilot_throttle-motors->get_throttle_hover()) * 1000.0f);
|
|
}
|
|
|
|
// rotate vector from vehicle's perspective to North-East frame
|
|
void Copter::rotate_body_frame_to_NE(float &x, float &y)
|
|
{
|
|
float ne_x = x*ahrs.cos_yaw() - y*ahrs.sin_yaw();
|
|
float ne_y = x*ahrs.sin_yaw() + y*ahrs.cos_yaw();
|
|
x = ne_x;
|
|
y = ne_y;
|
|
}
|
|
|
|
// It will return the PILOT_SPEED_DN value if non zero, otherwise if zero it returns the PILOT_SPEED_UP value.
|
|
uint16_t Copter::get_pilot_speed_dn()
|
|
{
|
|
if (g2.pilot_speed_dn == 0) {
|
|
return abs(g.pilot_speed_up);
|
|
} else {
|
|
return abs(g2.pilot_speed_dn);
|
|
}
|
|
}
|