ardupilot/libraries/AR_WPNav/AR_WPNav.cpp
Peter Barker 224c32edf0 AR_WPNav: stop libraries including AP_Logger.h in .h files
AP_Logger.h is a nexus of includes; while this is being improved over
time, there's no reason for the library headers to include AP_Logger.h
as the logger itself is access by singleton and the structures are in
LogStructure.h

This necessitated moving The PID_Info structure out of AP_Logger's
namespace.  This cleans up a pretty nasty bit - that structure is
definitely not simply used for logging, but also used to pass pid
information around to controllers!

There are a lot of patches in here because AP_Logger.h, acting as a
nexus, was providing transitive header file inclusion in many (some
unlikely!) places.
2022-04-08 19:18:38 +10:00

627 lines
24 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Math/AP_Math.h>
#include <AP_HAL/AP_HAL.h>
#include "AR_WPNav.h"
#include <GCS_MAVLink/GCS.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <stdio.h>
#endif
extern const AP_HAL::HAL& hal;
#define AR_WPNAV_TIMEOUT_MS 100
#define AR_WPNAV_SPEED_DEFAULT 2.0f
#define AR_WPNAV_SPEED_MIN 0.05f // minimum speed between waypoints in m/s
#define AR_WPNAV_SPEED_UPDATE_MIN_MS 500 // max speed cannot be updated more than once in this many milliseconds
#define AR_WPNAV_RADIUS_DEFAULT 2.0f
#define AR_WPNAV_OVERSPEED_RATIO_MAX 5.0f // if _overspeed_enabled the vehicle may travel as quickly as 5x WP_SPEED
#define AR_WPNAV_SNAP_MAX 15.0f // scurve snap (change in jerk) in m/s/s/s/s
#define AR_WPNAV_ACCEL_MAX 20.0 // acceleration used when user has specified no acceleration limit
const AP_Param::GroupInfo AR_WPNav::var_info[] = {
// @Param: SPEED
// @DisplayName: Waypoint speed default
// @Description: Waypoint speed default
// @Units: m/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("SPEED", 1, AR_WPNav, _speed_max, AR_WPNAV_SPEED_DEFAULT),
// @Param: RADIUS
// @DisplayName: Waypoint radius
// @Description: The distance in meters from a waypoint when we consider the waypoint has been reached. This determines when the vehicle will turn toward the next waypoint.
// @Units: m
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("RADIUS", 2, AR_WPNav, _radius, AR_WPNAV_RADIUS_DEFAULT),
// 3 was OVERSHOOT
// 4 was PIVOT_ANGLE
// 5 was PIVOT_RATE
// 6 was SPEED_MIN
// 7 was PIVOT_DELAY
// @Group: PIVOT_
// @Path: AR_PivotTurn.cpp
AP_SUBGROUPINFO(_pivot, "PIVOT_", 8, AR_WPNav, AR_PivotTurn),
// @Param: ACCEL
// @DisplayName: Waypoint acceleration
// @Description: Waypoint acceleration. If zero then ATC_ACCEL_MAX is used
// @Units: m/s/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("ACCEL", 9, AR_WPNav, _accel_max, 0),
// @Param: JERK
// @DisplayName: Waypoint jerk
// @Description: Waypoint jerk (change in acceleration). If zero then jerk is same as acceleration
// @Units: m/s/s/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("JERK", 10, AR_WPNav, _jerk_max, 0),
AP_GROUPEND
};
AR_WPNav::AR_WPNav(AR_AttitudeControl& atc, AR_PosControl &pos_control) :
_atc(atc),
_pos_control(pos_control),
_pivot(atc)
{
AP_Param::setup_object_defaults(this, var_info);
}
// initialise waypoint controller. speed_max should be set to the maximum speed in m/s (or left at zero to use the default speed)
void AR_WPNav::init(float speed_max)
{
// determine max speed, acceleration and jerk
if (is_positive(speed_max)) {
_base_speed_max = speed_max;
} else {
_base_speed_max = _speed_max;
}
_base_speed_max = MAX(AR_WPNAV_SPEED_MIN, _base_speed_max);
float atc_accel_max = MIN(_atc.get_accel_max(), _atc.get_decel_max());
if (!is_positive(atc_accel_max)) {
// accel_max of zero means no limit so use maximum acceleration
atc_accel_max = AR_WPNAV_ACCEL_MAX;
}
const float accel_max = is_positive(_accel_max) ? MIN(_accel_max, atc_accel_max) : atc_accel_max;
const float jerk_max = is_positive(_jerk_max) ? _jerk_max : accel_max;
// initialise position controller
_pos_control.set_limits(_base_speed_max, accel_max, _atc.get_turn_lat_accel_max(), jerk_max);
_scurve_prev_leg.init();
_scurve_this_leg.init();
_scurve_next_leg.init();
_track_scalar_dt = 1.0f;
// init some flags
_reached_destination = false;
_fast_waypoint = false;
// ensure pivot turns are deactivated
_pivot.deactivate();
_pivot_at_next_wp = false;
// initialise origin and destination to stopping point
_orig_and_dest_valid = false;
set_origin_and_destination_to_stopping_point();
// initialise nudge speed to zero
set_nudge_speed_max(0);
}
// update navigation
void AR_WPNav::update(float dt)
{
// exit immediately if no current location, origin or destination
Location current_loc;
float speed;
if (!hal.util->get_soft_armed() || !_orig_and_dest_valid || !AP::ahrs().get_location(current_loc) || !_atc.get_forward_speed(speed)) {
_desired_speed_limited = _atc.get_desired_speed_accel_limited(0.0f, dt);
_desired_lat_accel = 0.0f;
_desired_turn_rate_rads = 0.0f;
_cross_track_error = 0;
return;
}
// if no recent calls initialise desired_speed_limited to current speed
if (!is_active()) {
_desired_speed_limited = speed;
}
_last_update_ms = AP_HAL::millis();
update_distance_and_bearing_to_destination();
// handle change in max speed
update_speed_max();
// advance target along path unless vehicle is pivoting
if (!_pivot.active()) {
switch (_nav_control_type) {
case NavControllerType::NAV_SCURVE:
advance_wp_target_along_track(current_loc, dt);
break;
case NavControllerType::NAV_PSC_INPUT_SHAPING:
update_psc_input_shaping(dt);
break;
}
}
// update_steering_and_speed
update_steering_and_speed(current_loc, dt);
}
// set maximum speed in m/s. returns true on success
// this should not be called at more than 3hz or else SCurve path planning may not advance properly
bool AR_WPNav::set_speed_max(float speed_max)
{
// range check target speed
if (speed_max < AR_WPNAV_SPEED_MIN) {
return false;
}
_base_speed_max = speed_max;
return true;
}
// set speed nudge in m/s. this will have no effect unless nudge_speed_max > speed_max
// nudge_speed_max should always be positive regardless of whether the vehicle is travelling forward or reversing
void AR_WPNav::set_nudge_speed_max(float nudge_speed_max)
{
_nudge_speed_max = nudge_speed_max;
}
// set desired location and (optionally) next_destination
// next_destination should be provided if known to allow smooth cornering
bool AR_WPNav::set_desired_location(const struct Location& destination, Location next_destination)
{
// re-initialise if inactive, previous destination has been interrupted or different controller was used
if (!is_active() || !_reached_destination || (_nav_control_type != NavControllerType::NAV_SCURVE)) {
if (!set_origin_and_destination_to_stopping_point()) {
return false;
}
// clear scurves
_scurve_prev_leg.init();
_scurve_this_leg.init();
_scurve_next_leg.init();
}
// shift this leg to previous leg
_scurve_prev_leg = _scurve_this_leg;
// initialise some variables
_origin = _destination;
_destination = destination;
_orig_and_dest_valid = true;
_reached_destination = false;
update_distance_and_bearing_to_destination();
// check if vehicle should pivot if vehicle stopped at previous waypoint
// or journey to previous waypoint was interrupted or navigation has just started
if (!_fast_waypoint) {
_pivot.deactivate();
_pivot.check_activation((_reversed ? wrap_360_cd(oa_wp_bearing_cd() + 18000) : oa_wp_bearing_cd()) * 0.01, _pivot_at_next_wp);
}
// convert origin and destination to offset from EKF origin
Vector2f origin_NE;
Vector2f destination_NE;
if (!_origin.get_vector_xy_from_origin_NE(origin_NE) ||
!_destination.get_vector_xy_from_origin_NE(destination_NE)) {
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
return false;
}
origin_NE *= 0.01f;
destination_NE *= 0.01f;
// calculate track to destination
if (_fast_waypoint && !_scurve_next_leg.finished()) {
// skip recalculating this leg by simply shifting next leg
_scurve_this_leg = _scurve_next_leg;
} else {
_scurve_this_leg.calculate_track(Vector3f{origin_NE.x, origin_NE.y, 0.0f}, // origin
Vector3f{destination_NE.x, destination_NE.y, 0.0f}, // destination
_pos_control.get_speed_max(),
_pos_control.get_speed_max(), // speed up (not used)
_pos_control.get_speed_max(), // speed down (not used)
_pos_control.get_accel_max(), // forward back acceleration
_pos_control.get_accel_max(), // vertical accel (not used)
AR_WPNAV_SNAP_MAX, // snap
_pos_control.get_jerk_max());
}
// handle next destination
_scurve_next_leg.init();
_fast_waypoint = false;
_pivot_at_next_wp = false;
if (next_destination.initialised()) {
// check if vehicle should pivot at next waypoint
const float next_wp_yaw_change = get_corner_angle(_origin, destination, next_destination);
_pivot_at_next_wp = _pivot.would_activate(next_wp_yaw_change);
if (!_pivot_at_next_wp) {
// convert next_destination to offset from EKF origin
Vector2f next_destination_NE;
if (!next_destination.get_vector_xy_from_origin_NE(next_destination_NE)) {
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
return false;
}
next_destination_NE *= 0.01f;
_scurve_next_leg.calculate_track(Vector3f{destination_NE.x, destination_NE.y, 0.0f},
Vector3f{next_destination_NE.x, next_destination_NE.y, 0.0f},
_pos_control.get_speed_max(),
_pos_control.get_speed_max(), // speed up (not used)
_pos_control.get_speed_max(), // speed down (not used)
_pos_control.get_accel_max(), // forward back acceleration
_pos_control.get_accel_max(), // vertical accel (not used)
AR_WPNAV_SNAP_MAX, // snap
_pos_control.get_jerk_max());
// next destination provided so fast waypoint
_fast_waypoint = true;
}
}
// scurves used for navigation to destination
_nav_control_type = NavControllerType::NAV_SCURVE;
update_distance_and_bearing_to_destination();
return true;
}
// set desired location to a reasonable stopping point, return true on success
bool AR_WPNav::set_desired_location_to_stopping_location()
{
Location stopping_loc;
if (!get_stopping_location(stopping_loc)) {
return false;
}
return set_desired_location(stopping_loc);
}
// set desired location as offset from the EKF origin, return true on success
bool AR_WPNav::set_desired_location_NED(const Vector3f& destination)
{
// initialise destination to ekf origin
Location destination_ned;
if (!AP::ahrs().get_origin(destination_ned)) {
return false;
}
// apply offset
destination_ned.offset(destination.x, destination.y);
return set_desired_location(destination_ned);
}
bool AR_WPNav::set_desired_location_NED(const Vector3f &destination, const Vector3f &next_destination)
{
// initialise destination to ekf origin
Location dest_loc, next_dest_loc;
if (!AP::ahrs().get_origin(dest_loc)) {
return false;
}
next_dest_loc = dest_loc;
// apply offsets
dest_loc.offset(destination.x, destination.y);
next_dest_loc.offset(next_destination.x, next_destination.y);
return set_desired_location(dest_loc, next_dest_loc);
}
// set desired location but expect the destination to be updated again in the near future
// position controller input shaping will be used for navigation instead of scurves
// Note: object avoidance is not supported if this method is used
bool AR_WPNav::set_desired_location_expect_fast_update(const Location &destination)
{
// initialise if not active
if (!is_active() || (_nav_control_type != NavControllerType::NAV_PSC_INPUT_SHAPING)) {
if (!set_origin_and_destination_to_stopping_point()) {
return false;
}
}
// initialise some variables
_origin = _destination;
_destination = destination;
_orig_and_dest_valid = true;
_reached_destination = false;
update_distance_and_bearing_to_destination();
// check if vehicle should pivot
_pivot.check_activation((_reversed ? wrap_360_cd(oa_wp_bearing_cd() + 18000) : oa_wp_bearing_cd()) * 0.01);
// position controller input shaping used for navigation to destination
_nav_control_type = NavControllerType::NAV_PSC_INPUT_SHAPING;
return true;
}
// calculate vehicle stopping point using current location, velocity and maximum acceleration
bool AR_WPNav::get_stopping_location(Location& stopping_loc)
{
Location current_loc;
if (!AP::ahrs().get_location(current_loc)) {
return false;
}
// get current velocity vector and speed
const Vector2f velocity = AP::ahrs().groundspeed_vector();
const float speed = velocity.length();
// avoid divide by zero
if (!is_positive(speed)) {
stopping_loc = current_loc;
return true;
}
// get stopping distance in meters
const float stopping_dist = _atc.get_stopping_distance(speed);
// calculate stopping position from current location in meters
const Vector2f stopping_offset = velocity.normalized() * stopping_dist;
stopping_loc = current_loc;
stopping_loc.offset(stopping_offset.x, stopping_offset.y);
return true;
}
// true if update has been called recently
bool AR_WPNav::is_active() const
{
return ((AP_HAL::millis() - _last_update_ms) < AR_WPNAV_TIMEOUT_MS);
}
// move target location along track from origin to destination using SCurves navigation
void AR_WPNav::advance_wp_target_along_track(const Location &current_loc, float dt)
{
// exit immediately if no current location, destination or disarmed
Vector2f curr_pos_NE;
Vector3f curr_vel_NED;
if (!AP::ahrs().get_relative_position_NE_origin(curr_pos_NE) || !AP::ahrs().get_velocity_NED(curr_vel_NED)) {
return;
}
// exit immediately if we can't convert waypoint origin to offset from ekf origin
Vector2f origin_NE;
if (!_origin.get_vector_xy_from_origin_NE(origin_NE)) {
return;
}
// convert from cm to meters
origin_NE *= 0.01f;
// use _track_scalar_dt to slow down S-Curve time to prevent target moving too far in front of vehicle
Vector2f curr_target_vel = _pos_control.get_desired_velocity();
float track_scaler_dt = 1.0f;
if (is_positive(curr_target_vel.length())) {
Vector2f track_direction = curr_target_vel.normalized();
const float track_error = _pos_control.get_pos_error().tofloat().dot(track_direction);
float track_velocity = curr_vel_NED.xy().dot(track_direction);
// set time scaler to be consistent with the achievable vehicle speed with a 5% buffer for short term variation.
const float time_scaler_dt_max = _overspeed_enabled ? AR_WPNAV_OVERSPEED_RATIO_MAX : 1.0f;
track_scaler_dt = constrain_float(0.05f + (track_velocity - _pos_control.get_pos_p().kP() * track_error) / curr_target_vel.length(), 0.1f, time_scaler_dt_max);
}
// change s-curve time speed with a time constant of maximum acceleration / maximum jerk
float track_scaler_tc = 1.0f;
if (is_positive(_pos_control.get_jerk_max())) {
track_scaler_tc = _pos_control.get_accel_max() / _pos_control.get_jerk_max();
}
_track_scalar_dt += (track_scaler_dt - _track_scalar_dt) * (dt / track_scaler_tc);
// target position, velocity and acceleration from straight line or spline calculators
Vector3f target_pos_3d_ftype{origin_NE.x, origin_NE.y, 0.0f};
Vector3f target_vel, target_accel;
// update target position, velocity and acceleration
const float wp_radius = MAX(_radius, _turn_radius);
bool s_finished = _scurve_this_leg.advance_target_along_track(_scurve_prev_leg, _scurve_next_leg, wp_radius, _pos_control.get_lat_accel_max(), _fast_waypoint, _track_scalar_dt * dt, target_pos_3d_ftype, target_vel, target_accel);
// pass new target to the position controller
init_pos_control_if_necessary();
Vector2p target_pos_ptype{target_pos_3d_ftype.x, target_pos_3d_ftype.y};
_pos_control.set_pos_vel_accel_target(target_pos_ptype, target_vel.xy(), target_accel.xy());
// check if we've reached the waypoint
if (!_reached_destination && s_finished) {
// "fast" waypoints are complete once the intermediate point reaches the destination
if (_fast_waypoint) {
_reached_destination = true;
} else {
// regular waypoints also require the vehicle to be within the waypoint radius or past the "finish line"
const bool near_wp = current_loc.get_distance(_destination) <= _radius;
const bool past_wp = current_loc.past_interval_finish_line(_origin, _destination);
_reached_destination = near_wp || past_wp;
}
}
}
// update psc input shaping navigation controller
void AR_WPNav::update_psc_input_shaping(float dt)
{
// convert destination location to offset from EKF origin (in meters)
Vector2f pos_target_cm;
if (!_destination.get_vector_xy_from_origin_NE(pos_target_cm)) {
return;
}
// initialise position controller if not called recently
init_pos_control_if_necessary();
// convert to meters and update target
const Vector2p pos_target = pos_target_cm.topostype() * 0.01;
_pos_control.input_pos_target(pos_target, dt);
// update reached_destination
if (!_reached_destination) {
// calculate position difference between destination and position controller input shaped target
Vector2p pos_target_diff = pos_target - _pos_control.get_pos_target();
// vehicle has reached destination when the target is within 1cm of the destination and vehicle is within waypoint radius
_reached_destination = (pos_target_diff.length_squared() < sq(0.01)) && (_pos_control.get_pos_error().length_squared() < sq(_radius));
}
}
// update distance from vehicle's current position to destination
void AR_WPNav::update_distance_and_bearing_to_destination()
{
// if no current location leave distance unchanged
Location current_loc;
if (!_orig_and_dest_valid || !AP::ahrs().get_location(current_loc)) {
_distance_to_destination = 0.0f;
_wp_bearing_cd = 0.0f;
return;
}
_distance_to_destination = current_loc.get_distance(_destination);
_wp_bearing_cd = current_loc.get_bearing_to(_destination);
}
// calculate steering and speed to drive along line from origin to destination waypoint
void AR_WPNav::update_steering_and_speed(const Location &current_loc, float dt)
{
_cross_track_error = calc_crosstrack_error(current_loc);
// handle pivot turns
if (_pivot.active()) {
// decelerate to zero
_desired_speed_limited = _atc.get_desired_speed_accel_limited(0.0f, dt);
_desired_heading_cd = _reversed ? wrap_360_cd(oa_wp_bearing_cd() + 18000) : oa_wp_bearing_cd();
_desired_turn_rate_rads = is_zero(_desired_speed_limited) ? _pivot.get_turn_rate_rads(_desired_heading_cd * 0.01, dt) : 0;
_desired_lat_accel = 0.0f;
return;
}
_pos_control.set_reversed(_reversed);
_pos_control.update(dt);
_desired_speed_limited = _pos_control.get_desired_speed();
_desired_turn_rate_rads = _pos_control.get_desired_turn_rate_rads();
_desired_lat_accel = _pos_control.get_desired_lat_accel();
}
// settor to allow vehicle code to provide turn related param values to this library (should be updated regularly)
void AR_WPNav::set_turn_params(float turn_radius, bool pivot_possible)
{
_turn_radius = pivot_possible ? 0.0 : turn_radius;
_pivot.enable(pivot_possible);
}
// calculate the crosstrack error
float AR_WPNav::calc_crosstrack_error(const Location& current_loc) const
{
if (!_orig_and_dest_valid) {
return 0.0f;
}
// get object avoidance adjusted origin and destination
const Location &orig = get_oa_origin();
const Location &dest = get_oa_destination();
// calculate the NE position of destination relative to origin
Vector2f dest_from_origin = orig.get_distance_NE(dest);
// return distance to destination if length of track is very small
if (dest_from_origin.length() < 1.0e-6f) {
return current_loc.get_distance_NE(dest).length();
}
// convert to a vector indicating direction only
dest_from_origin.normalize();
// calculate the NE position of the vehicle relative to origin
const Vector2f veh_from_origin = orig.get_distance_NE(current_loc);
// calculate distance to target track, for reporting
return veh_from_origin % dest_from_origin;
}
// calculate yaw change at next waypoint in degrees
// returns zero if the angle cannot be calculated because some points are on top of others
float AR_WPNav::get_corner_angle(const Location& loc1, const Location& loc2, const Location& loc3) const
{
// sanity check
if (!loc1.initialised() || !loc2.initialised() || !loc3.initialised()) {
return 0;
}
const float loc1_to_loc2_deg = loc1.get_bearing_to(loc2) * 0.01;
const float loc2_to_loc3_deg = loc2.get_bearing_to(loc3) * 0.01;
const float diff_yaw_deg = wrap_180(loc2_to_loc3_deg - loc1_to_loc2_deg);
return diff_yaw_deg;
}
// helper function to initialise position controller if it hasn't been called recently
// this should be called before updating the position controller with new targets but after the EKF has a good position estimate
void AR_WPNav::init_pos_control_if_necessary()
{
// initialise position controller if not called recently
if (!_pos_control.is_active()) {
if (!_pos_control.init()) {
// this should never fail because we should always have a valid position estimate at this point
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
return;
}
}
}
// set origin and destination to stopping point
bool AR_WPNav::set_origin_and_destination_to_stopping_point()
{
// initialise origin and destination to stopping point
Location stopping_loc;
if (!get_stopping_location(stopping_loc)) {
return false;
}
_origin = _destination = stopping_loc;
_orig_and_dest_valid = true;
return true;
}
// check for changes in _base_speed_max or _nudge_speed_max
// updates position controller limits and recalculate scurve path if required
void AR_WPNav::update_speed_max()
{
const float speed_max = MAX(_base_speed_max, _nudge_speed_max);
// ignore calls that do not change the speed
if (is_equal(speed_max, _pos_control.get_speed_max())) {
return;
}
// protect against rapid updates
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - _last_speed_update_ms < AR_WPNAV_SPEED_UPDATE_MIN_MS) {
return;
}
_last_speed_update_ms = now_ms;
// update position controller max speed
_pos_control.set_limits(speed_max, _pos_control.get_accel_max(), _pos_control.get_lat_accel_max(), _pos_control.get_jerk_max());
// change track speed
_scurve_this_leg.set_speed_max(_pos_control.get_speed_max(), _pos_control.get_speed_max(), _pos_control.get_speed_max());
_scurve_next_leg.set_speed_max(_pos_control.get_speed_max(), _pos_control.get_speed_max(), _pos_control.get_speed_max());
}