ardupilot/libraries/AP_Winch/AP_Winch_Daiwa.cpp
Peter Barker 6a0250bc85 AP_Winch: stop libraries including AP_Logger.h in .h files
AP_Logger.h is a nexus of includes; while this is being improved over
time, there's no reason for the library headers to include AP_Logger.h
as the logger itself is access by singleton and the structures are in
LogStructure.h

This necessitated moving The PID_Info structure out of AP_Logger's
namespace.  This cleans up a pretty nasty bit - that structure is
definitely not simply used for logging, but also used to pass pid
information around to controllers!

There are a lot of patches in here because AP_Logger.h, acting as a
nexus, was providing transitive header file inclusion in many (some
unlikely!) places.
2022-04-08 19:18:38 +10:00

225 lines
7.8 KiB
C++

#include <AP_Winch/AP_Winch_Daiwa.h>
#include <AP_Logger/AP_Logger.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
// true if winch is healthy
bool AP_Winch_Daiwa::healthy() const
{
// healthy if we have received data within 3 seconds
return (AP_HAL::millis() - data_update_ms < 3000);
}
void AP_Winch_Daiwa::init()
{
// call superclass init
AP_Winch_Backend::init();
// initialise serial connection to winch
const AP_SerialManager &serial_manager = AP::serialmanager();
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Winch, 0);
if (uart != nullptr) {
// always use baudrate of 115200
uart->begin(115200);
}
}
void AP_Winch_Daiwa::update()
{
// return immediately if no servo is assigned to control the winch
if (!SRV_Channels::function_assigned(SRV_Channel::k_winch)) {
return;
}
// read latest data from winch
read_data_from_winch();
// read pilot input
read_pilot_desired_rate();
// send outputs to winch
control_winch();
}
//send generator status
void AP_Winch_Daiwa::send_status(const GCS_MAVLINK &channel)
{
// prepare status bitmask
uint32_t status_bitmask = 0;
if (healthy()) {
status_bitmask |= MAV_WINCH_STATUS_HEALTHY;
}
if (latest.thread_end) {
status_bitmask |= MAV_WINCH_STATUS_FULLY_RETRACTED;
}
if (latest.moving > 0) {
status_bitmask |= MAV_WINCH_STATUS_MOVING;
}
if (latest.clutch > 0) {
status_bitmask |= MAV_WINCH_STATUS_CLUTCH_ENGAGED;
}
// convert speed percentage to absolute speed
const float speed_ms = fabsf(config.rate_max) * (float)latest.speed_pct * 0.01f;
// send status
mavlink_msg_winch_status_send(
channel.get_chan(),
AP_HAL::micros64(),
latest.line_length,
speed_ms,
(float)latest.tension_corrected * 0.01f,
latest.voltage,
latest.current,
latest.motor_temp,
status_bitmask);
}
// write log
void AP_Winch_Daiwa::write_log()
{
AP::logger().Write_Winch(
healthy(),
latest.thread_end,
latest.moving,
latest.clutch,
(uint8_t)config.control_mode,
config.length_desired,
get_current_length(),
config.rate_desired,
latest.tension_corrected,
latest.voltage,
constrain_int16(latest.motor_temp, INT8_MIN, INT8_MAX));
}
// read incoming data from winch and update intermediate and latest structures
void AP_Winch_Daiwa::read_data_from_winch()
{
// return immediately if serial port is not configured
if (uart == nullptr) {
return;
}
// read any available characters from serial port and send to GCS
int16_t nbytes = uart->available();
while (nbytes-- > 0) {
int16_t b = uart->read();
if ((b >= '0' && b <= '9') || (b >= 'A' && b <= 'F') || (b >= 'a' && b <= 'f')) {
// add digits to buffer
buff[buff_len] = b;
buff_len++;
if (buff_len >= ARRAY_SIZE(buff)) {
buff_len = 0;
parse_state = ParseState::WAITING_FOR_TIME;
}
} else if (b == ',' || b == '\r') {
// comma or carriage return signals end of current value
// parse number received and empty buffer
buff[buff_len] = '\0';
long int value = (int32_t)strtol(buff, nullptr, 16);
buff_len = 0;
switch (parse_state) {
case ParseState::WAITING_FOR_TIME:
intermediate.time_ms = (uint32_t)value;
parse_state = ParseState::WAITING_FOR_SPOOL;
break;
case ParseState::WAITING_FOR_SPOOL:
intermediate.line_length = (int32_t)value * line_length_correction_factor;
parse_state = ParseState::WAITING_FOR_TENSION1;
break;
case ParseState::WAITING_FOR_TENSION1:
intermediate.tension_uncorrected = (uint16_t)value;
parse_state = ParseState::WAITING_FOR_TENSION2;
break;
case ParseState::WAITING_FOR_TENSION2:
intermediate.tension_corrected = (uint16_t)value;
parse_state = ParseState::WAITING_FOR_THREAD_END;
break;
case ParseState::WAITING_FOR_THREAD_END:
intermediate.thread_end = (value > 0);
parse_state = ParseState::WAITING_FOR_MOVING;
break;
case ParseState::WAITING_FOR_MOVING:
intermediate.moving = constrain_int32(value, 0, UINT8_MAX);
parse_state = ParseState::WAITING_FOR_CLUTCH;
break;
case ParseState::WAITING_FOR_CLUTCH:
intermediate.clutch = constrain_int32(value, 0, UINT8_MAX);
parse_state = ParseState::WAITING_FOR_SPEED;
break;
case ParseState::WAITING_FOR_SPEED:
intermediate.speed_pct = constrain_int32(value, 0, UINT8_MAX);
parse_state = ParseState::WAITING_FOR_VOLTAGE;
break;
case ParseState::WAITING_FOR_VOLTAGE:
intermediate.voltage = (float)value * 0.1f;
parse_state = ParseState::WAITING_FOR_CURRENT;
break;
case ParseState::WAITING_FOR_CURRENT:
intermediate.current = (float)value * 0.1f;
parse_state = ParseState::WAITING_FOR_PCB_TEMP;
break;
case ParseState::WAITING_FOR_PCB_TEMP:
intermediate.pcb_temp = (float)value * 0.1f;
parse_state = ParseState::WAITING_FOR_MOTOR_TEMP;
break;
case ParseState::WAITING_FOR_MOTOR_TEMP:
intermediate.motor_temp = (float)value * 0.1f;
// successfully parsed a complete message
latest = intermediate;
data_update_ms = AP_HAL::millis();
parse_state = ParseState::WAITING_FOR_TIME;
break;
}
} else {
// line feed or unexpected characters
buff_len = 0;
parse_state = ParseState::WAITING_FOR_TIME;
}
}
}
// update pwm outputs to control winch
void AP_Winch_Daiwa::control_winch()
{
const uint32_t now_ms = AP_HAL::millis();
float dt = (now_ms - control_update_ms) * 0.001f;
if (dt > 1.0f) {
dt = 0.0f;
}
control_update_ms = now_ms;
// if real doing any control output trim value
if (config.control_mode == AP_Winch::ControlMode::RELAXED) {
// if not doing any control output release clutch and move winch to trim
SRV_Channels::set_output_limit(SRV_Channel::k_winch_clutch, SRV_Channel::Limit::MAX);
SRV_Channels::set_output_scaled(SRV_Channel::k_winch, 0);
// rate used for acceleration limiting reset to zero
set_previous_rate(0.0f);
return;
}
// release clutch
SRV_Channels::set_output_limit(SRV_Channel::k_winch_clutch, SRV_Channel::Limit::MIN);
// if doing position control, calculate position error to desired rate
if ((config.control_mode == AP_Winch::ControlMode::POSITION) && healthy()) {
float position_error = config.length_desired - latest.line_length;
config.rate_desired = constrain_float(position_error * config.pos_p, -config.rate_max, config.rate_max);
}
// apply acceleration limited to rate
const float rate_limited = get_rate_limited_by_accel(config.rate_desired, dt);
// use linear interpolation to calculate output to move winch at desired rate
float scaled_output = 0;
if (!is_zero(rate_limited)) {
scaled_output = linear_interpolate(output_dz, 1000, fabsf(rate_limited), 0, config.rate_max) * (is_positive(rate_limited) ? 1.0f : -1.0f);
}
SRV_Channels::set_output_scaled(SRV_Channel::k_winch, scaled_output);
}