ardupilot/libraries/AP_RPM/AP_RPM.cpp
Andrew Tridgell 13453f705e AP_RPM: added AP_Generator support
useful for notch filtering of generator vibration
2022-08-30 10:53:45 +10:00

304 lines
8.5 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_RPM.h"
#include "RPM_Pin.h"
#include "RPM_SITL.h"
#include "RPM_EFI.h"
#include "RPM_Generator.h"
#include "RPM_HarmonicNotch.h"
#include "RPM_ESC_Telem.h"
#include <AP_Logger/AP_Logger.h>
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_RPM::var_info[] = {
// 0-13 used by old param indexes before being moved to AP_RPM_Params
// @Group: 1_
// @Path: AP_RPM_Params.cpp
AP_SUBGROUPINFO(_params[0], "1_", 14, AP_RPM, AP_RPM_Params),
#if RPM_MAX_INSTANCES > 1
// @Group: 2_
// @Path: AP_RPM_Params.cpp
AP_SUBGROUPINFO(_params[1], "2_", 15, AP_RPM, AP_RPM_Params),
#endif
AP_GROUPEND
};
AP_RPM::AP_RPM(void)
{
AP_Param::setup_object_defaults(this, var_info);
if (_singleton != nullptr) {
AP_HAL::panic("AP_RPM must be singleton");
}
_singleton = this;
}
/*
initialise the AP_RPM class.
*/
void AP_RPM::init(void)
{
if (num_instances != 0) {
// init called a 2nd time?
return;
}
convert_params();
for (uint8_t i=0; i<RPM_MAX_INSTANCES; i++) {
switch (_params[i].type) {
#if CONFIG_HAL_BOARD != HAL_BOARD_SITL
case RPM_TYPE_PWM:
case RPM_TYPE_PIN:
// PWM option same as PIN option, for upgrade
drivers[i] = new AP_RPM_Pin(*this, i, state[i]);
break;
#endif
case RPM_TYPE_ESC_TELEM:
drivers[i] = new AP_RPM_ESC_Telem(*this, i, state[i]);
break;
#if HAL_EFI_ENABLED
case RPM_TYPE_EFI:
drivers[i] = new AP_RPM_EFI(*this, i, state[i]);
break;
#endif
#if HAL_GENERATOR_ENABLED
case RPM_TYPE_GENERATOR:
drivers[i] = new AP_RPM_Generator(*this, i, state[i]);
break;
#endif
// include harmonic notch last
// this makes whatever process is driving the dynamic notch appear as an RPM value
case RPM_TYPE_HNTCH:
drivers[i] = new AP_RPM_HarmonicNotch(*this, i, state[i]);
break;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
case RPM_TYPE_SITL:
drivers[i] = new AP_RPM_SITL(*this, i, state[i]);
break;
#endif
}
if (drivers[i] != nullptr) {
// we loaded a driver for this instance, so it must be
// present (although it may not be healthy)
num_instances = i+1; // num_instances is a high-water-mark
}
}
}
/*
PARAMETER_CONVERSION - Added: Aug-2021
*/
void AP_RPM::convert_params(void)
{
if (_params[0].type.configured()) {
// _params[0].type will always be configured after conversion is done the first time
return;
}
// don't do conversion if neither RPM types were set
bool type_set;
uint8_t rpm_type = 0;
uint8_t rpm2_type = 0;
type_set = AP_Param::get_param_by_index(this, 0, AP_PARAM_INT8, &rpm_type);
type_set |= AP_Param::get_param_by_index(this, 10, AP_PARAM_INT8, &rpm2_type);
if (!type_set || (rpm_type == 0 && rpm2_type == 0)) {
return;
}
struct ConversionTable {
uint8_t old_element;
uint8_t new_index;
uint8_t instance;
};
const struct ConversionTable conversionTable[] = {
// RPM 1
{0, 0, 0}, // TYPE
{1, 1, 0}, // SCALING
{2, 2, 0}, // MAX
{3, 3, 0}, // MIN
{4, 4, 0}, // MIN_QUAL
{5, 5, 0}, // PIN
{6, 6, 0}, // ESC_MASK
// RPM 2
{10, 0, 1}, // TYPE
{11, 1, 1}, // SCALING
// MAX (Previous bug meant RPM2_MAX param was never accesible to users. No conversion required.)
// MIN (Previous bug meant RPM2_MIN param was never accesible to users. No conversion required.)
{4, 4, 1}, // MIN_QUAL (Previously the min quality of the 1st RPM instance was used for all RPM instances.)
{12, 5, 1}, // PIN
{13, 6, 1}, // ESC_MASK
};
char param_name[17] = {0};
AP_Param::ConversionInfo info;
info.new_name = param_name;
if (!AP_Param::find_top_level_key_by_pointer(this, info.old_key)) {
_params[0].type.save(true);
return; // no conversion is supported on this platform
}
for (uint8_t i = 0; i < ARRAY_SIZE(conversionTable); i++) {
uint8_t param_instance = conversionTable[i].instance + 1;
uint8_t destination_index = conversionTable[i].new_index;
info.old_group_element = conversionTable[i].old_element;
// The var type of the params has not changed in the conversion so this is ok:
info.type = (ap_var_type)AP_RPM_Params::var_info[destination_index].type;
hal.util->snprintf(param_name, sizeof(param_name), "RPM%X_%s", param_instance, AP_RPM_Params::var_info[destination_index].name);
param_name[sizeof(param_name)-1] = '\0';
AP_Param::convert_old_parameter(&info, 1.0f, 0);
}
// force _params[0].type into storage to flag that conversion has been done
_params[0].type.save(true);
}
/*
update RPM state for all instances. This should be called by main loop
*/
void AP_RPM::update(void)
{
for (uint8_t i=0; i<num_instances; i++) {
if (drivers[i] != nullptr) {
if (_params[i].type == RPM_TYPE_NONE) {
// allow user to disable an RPM sensor at runtime and force it to re-learn the quality if re-enabled.
state[i].signal_quality = 0;
continue;
}
drivers[i]->update();
}
}
#if HAL_LOGGING_ENABLED
if (enabled(0) || enabled(1)) {
Log_RPM();
}
#endif
}
/*
check if an instance is healthy
*/
bool AP_RPM::healthy(uint8_t instance) const
{
if (instance >= num_instances || _params[instance].type == RPM_TYPE_NONE) {
return false;
}
// check that data quality is above minimum required
if (state[instance].signal_quality < _params[instance].quality_min) {
return false;
}
return true;
}
/*
check if an instance is activated
*/
bool AP_RPM::enabled(uint8_t instance) const
{
if (instance >= num_instances) {
return false;
}
// if no sensor type is selected, the sensor is not activated.
if (_params[instance].type == RPM_TYPE_NONE) {
return false;
}
return true;
}
/*
get RPM value, return true on success
*/
bool AP_RPM::get_rpm(uint8_t instance, float &rpm_value) const
{
if (!healthy(instance)) {
return false;
}
rpm_value = state[instance].rate_rpm;
return true;
}
// check settings are valid
bool AP_RPM::arming_checks(size_t buflen, char *buffer) const
{
for (uint8_t i=0; i<RPM_MAX_INSTANCES; i++) {
switch (_params[i].type) {
case RPM_TYPE_PWM:
case RPM_TYPE_PIN:
if (_params[i].pin == -1) {
hal.util->snprintf(buffer, buflen, "RPM%u_PIN not set", unsigned(i + 1));
return false;
}
if (!hal.gpio->valid_pin(_params[i].pin)) {
uint8_t servo_ch;
if (hal.gpio->pin_to_servo_channel(_params[i].pin, servo_ch)) {
hal.util->snprintf(buffer, buflen, "RPM%u_PIN=%d, set SERVO%u_FUNCTION=-1", unsigned(i + 1), int(_params[i].pin.get()), unsigned(servo_ch+1));
} else {
hal.util->snprintf(buffer, buflen, "RPM%u_PIN=%d invalid", unsigned(i + 1), int(_params[i].pin.get()));
}
return false;
}
break;
}
}
return true;
}
#if HAL_LOGGING_ENABLED
void AP_RPM::Log_RPM()
{
float rpm1 = -1, rpm2 = -1;
get_rpm(0, rpm1);
get_rpm(1, rpm2);
const struct log_RPM pkt{
LOG_PACKET_HEADER_INIT(LOG_RPM_MSG),
time_us : AP_HAL::micros64(),
rpm1 : rpm1,
rpm2 : rpm2
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
#endif
// singleton instance
AP_RPM *AP_RPM::_singleton;
namespace AP {
AP_RPM *rpm()
{
return AP_RPM::get_singleton();
}
}