ardupilot/AntennaTracker/system.cpp

243 lines
6.2 KiB
C++

#include "Tracker.h"
// mission storage
static const StorageAccess wp_storage(StorageManager::StorageMission);
static void mavlink_delay_cb_static()
{
tracker.mavlink_delay_cb();
}
void Tracker::init_tracker()
{
// initialise console serial port
serial_manager.init_console();
hal.console->printf("\n\nInit %s\n\nFree RAM: %u\n",
AP::fwversion().fw_string,
(unsigned)hal.util->available_memory());
// Check the EEPROM format version before loading any parameters from EEPROM
load_parameters();
gcs().set_dataflash(&DataFlash);
mavlink_system.sysid = g.sysid_this_mav;
// initialise serial ports
serial_manager.init();
// setup first port early to allow BoardConfig to report errors
gcs().chan(0).setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
BoardConfig.init();
#if HAL_WITH_UAVCAN
BoardConfig_CAN.init();
#endif
// initialise notify
notify.init(false);
AP_Notify::flags.pre_arm_check = true;
AP_Notify::flags.pre_arm_gps_check = true;
AP_Notify::flags.failsafe_battery = false;
// init baro before we start the GCS, so that the CLI baro test works
barometer.set_log_baro_bit(MASK_LOG_IMU);
barometer.init();
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
usb_connected = true;
check_usb_mux();
// setup telem slots with serial ports
gcs().setup_uarts(serial_manager);
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
if (g.compass_enabled==true) {
if (!compass.init() || !compass.read()) {
hal.console->printf("Compass initialisation failed!\n");
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
}
}
// GPS Initialization
gps.set_log_gps_bit(MASK_LOG_GPS);
gps.init(serial_manager);
ahrs.init();
ahrs.set_fly_forward(false);
ins.init(scheduler.get_loop_rate_hz());
ahrs.reset();
barometer.calibrate();
// initialise DataFlash library
DataFlash.setVehicle_Startup_Log_Writer(FUNCTOR_BIND(&tracker, &Tracker::Log_Write_Vehicle_Startup_Messages, void));
// set serial ports non-blocking
serial_manager.set_blocking_writes_all(false);
// initialise servos
init_servos();
// use given start positions - useful for indoor testing, and
// while waiting for GPS lock
// sanity check location
if (fabsf(g.start_latitude) <= 90.0f && fabsf(g.start_longitude) <= 180.0f) {
current_loc.lat = g.start_latitude * 1.0e7f;
current_loc.lng = g.start_longitude * 1.0e7f;
} else {
gcs().send_text(MAV_SEVERITY_NOTICE, "Ignoring invalid START_LATITUDE or START_LONGITUDE parameter");
}
// see if EEPROM has a default location as well
if (current_loc.lat == 0 && current_loc.lng == 0) {
get_home_eeprom(current_loc);
}
init_capabilities();
gcs().send_text(MAV_SEVERITY_INFO,"Ready to track");
hal.scheduler->delay(1000); // Why????
set_mode(AUTO, MODE_REASON_STARTUP); // tracking
if (g.startup_delay > 0) {
// arm servos with trim value to allow them to start up (required
// for some servos)
prepare_servos();
}
// disable safety if requested
BoardConfig.init_safety();
}
/*
fetch HOME from EEPROM
*/
bool Tracker::get_home_eeprom(struct Location &loc)
{
// Find out proper location in memory by using the start_byte position + the index
// --------------------------------------------------------------------------------
if (g.command_total.get() == 0) {
return false;
}
// read WP position
loc.options = wp_storage.read_byte(0);
loc.alt = wp_storage.read_uint32(1);
loc.lat = wp_storage.read_uint32(5);
loc.lng = wp_storage.read_uint32(9);
return true;
}
void Tracker::set_home_eeprom(struct Location temp)
{
wp_storage.write_byte(0, temp.options);
wp_storage.write_uint32(1, temp.alt);
wp_storage.write_uint32(5, temp.lat);
wp_storage.write_uint32(9, temp.lng);
// Now have a home location in EEPROM
g.command_total.set_and_save(1); // At most 1 entry for HOME
}
void Tracker::set_home(struct Location temp)
{
set_home_eeprom(temp);
current_loc = temp;
// check EKF origin has been set
Location ekf_origin;
if (ahrs.get_origin(ekf_origin)) {
ahrs.set_home(temp);
}
gcs().send_home();
gcs().send_ekf_origin();
}
void Tracker::arm_servos()
{
hal.util->set_soft_armed(true);
DataFlash.set_vehicle_armed(true);
}
void Tracker::disarm_servos()
{
hal.util->set_soft_armed(false);
DataFlash.set_vehicle_armed(false);
}
/*
setup servos to trim value after initialising
*/
void Tracker::prepare_servos()
{
start_time_ms = AP_HAL::millis();
SRV_Channels::set_output_limit(SRV_Channel::k_tracker_yaw, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM);
SRV_Channels::set_output_limit(SRV_Channel::k_tracker_pitch, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM);
SRV_Channels::calc_pwm();
SRV_Channels::output_ch_all();
}
void Tracker::set_mode(enum ControlMode mode, mode_reason_t reason)
{
if (control_mode == mode) {
// don't switch modes if we are already in the correct mode.
return;
}
control_mode = mode;
switch (control_mode) {
case AUTO:
case MANUAL:
case SCAN:
case SERVO_TEST:
arm_servos();
break;
case STOP:
case INITIALISING:
disarm_servos();
break;
}
// log mode change
DataFlash.Log_Write_Mode(control_mode, reason);
}
void Tracker::check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
}
/*
should we log a message type now?
*/
bool Tracker::should_log(uint32_t mask)
{
if (!DataFlash.should_log(mask)) {
return false;
}
return true;
}