mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 07:08:29 -04:00
519b1a6913
AP_Math: correct some tests AP_Math: more vector2 tests AP_Math: make test_vector2 complete AP_Math: add initial unittest for vector3
236 lines
8.2 KiB
C++
236 lines
8.2 KiB
C++
/*
|
|
* Copyright (C) 2015-2016 Intel Corporation. All rights reserved.
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
#include "math_test.h"
|
|
#include <AP_Math/AP_GeodesicGrid.h>
|
|
|
|
class TestParam {
|
|
public:
|
|
/**
|
|
* Vector to be tested.
|
|
*/
|
|
Vector3f v;
|
|
/**
|
|
* Expected section if when AP_GeodesicGrid::section() is called with
|
|
* inclusive set as false.
|
|
*/
|
|
int section;
|
|
/**
|
|
* Array terminated with -1. This doesn't have to be touched if #section
|
|
* isn't negative. If #section is -1, then calling
|
|
* AP_GeodesicGrid::section() with inclusive set as true expects a return
|
|
* value as one of the values in #inclusive_sections.
|
|
*/
|
|
int inclusive_sections[7];
|
|
};
|
|
|
|
class GeodesicGridTest : public ::testing::TestWithParam<TestParam> {
|
|
protected:
|
|
/**
|
|
* Test the functions for triangles indexes.
|
|
*
|
|
* @param p[in] The test parameter.
|
|
*/
|
|
void test_triangles_indexes(const TestParam &p) {
|
|
if (p.section >= 0) {
|
|
int expected_triangle =
|
|
p.section / AP_GeodesicGrid::NUM_SUBTRIANGLES;
|
|
int triangle = AP_GeodesicGrid::_triangle_index(p.v, false);
|
|
ASSERT_EQ(expected_triangle, triangle);
|
|
|
|
int expected_subtriangle =
|
|
p.section % AP_GeodesicGrid::NUM_SUBTRIANGLES;
|
|
int subtriangle =
|
|
AP_GeodesicGrid::_subtriangle_index(triangle, p.v, false);
|
|
ASSERT_EQ(expected_subtriangle, subtriangle);
|
|
} else {
|
|
int triangle = AP_GeodesicGrid::_triangle_index(p.v, false);
|
|
if (triangle >= 0) {
|
|
int subtriangle = AP_GeodesicGrid::_subtriangle_index(triangle,
|
|
p.v,
|
|
false);
|
|
ASSERT_EQ(-1, subtriangle) << "triangle is " << triangle;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
static const Vector3f triangles[20][3] = {
|
|
{{-M_GOLDEN, 1, 0}, {-1, 0,-M_GOLDEN}, {-M_GOLDEN,-1, 0}},
|
|
{{-1, 0,-M_GOLDEN}, {-M_GOLDEN,-1, 0}, { 0,-M_GOLDEN,-1}},
|
|
{{-M_GOLDEN,-1, 0}, { 0,-M_GOLDEN,-1}, { 0,-M_GOLDEN, 1}},
|
|
{{-1, 0,-M_GOLDEN}, { 0,-M_GOLDEN,-1}, { 1, 0,-M_GOLDEN}},
|
|
{{ 0,-M_GOLDEN,-1}, { 0,-M_GOLDEN, 1}, { M_GOLDEN,-1, 0}},
|
|
{{ 0,-M_GOLDEN,-1}, { 1, 0,-M_GOLDEN}, { M_GOLDEN,-1, 0}},
|
|
{{ M_GOLDEN,-1, 0}, { 1, 0,-M_GOLDEN}, { M_GOLDEN, 1, 0}},
|
|
{{ 1, 0,-M_GOLDEN}, { M_GOLDEN, 1, 0}, { 0, M_GOLDEN,-1}},
|
|
{{ 1, 0,-M_GOLDEN}, { 0, M_GOLDEN,-1}, {-1, 0,-M_GOLDEN}},
|
|
{{ 0, M_GOLDEN,-1}, {-M_GOLDEN, 1, 0}, {-1, 0,-M_GOLDEN}},
|
|
|
|
{{ M_GOLDEN,-1, 0}, { 1, 0, M_GOLDEN}, { M_GOLDEN, 1, 0}},
|
|
{{ 1, 0, M_GOLDEN}, { M_GOLDEN, 1, 0}, { 0, M_GOLDEN, 1}},
|
|
{{ M_GOLDEN, 1, 0}, { 0, M_GOLDEN, 1}, { 0, M_GOLDEN,-1}},
|
|
{{ 1, 0, M_GOLDEN}, { 0, M_GOLDEN, 1}, {-1, 0, M_GOLDEN}},
|
|
{{ 0, M_GOLDEN, 1}, { 0, M_GOLDEN,-1}, {-M_GOLDEN, 1, 0}},
|
|
{{ 0, M_GOLDEN, 1}, {-1, 0, M_GOLDEN}, {-M_GOLDEN, 1, 0}},
|
|
{{-M_GOLDEN, 1, 0}, {-1, 0, M_GOLDEN}, {-M_GOLDEN,-1, 0}},
|
|
{{-1, 0, M_GOLDEN}, {-M_GOLDEN,-1, 0}, { 0,-M_GOLDEN, 1}},
|
|
{{-1, 0, M_GOLDEN}, { 0,-M_GOLDEN, 1}, { 1, 0, M_GOLDEN}},
|
|
{{ 0,-M_GOLDEN, 1}, { M_GOLDEN,-1, 0}, { 1, 0, M_GOLDEN}},
|
|
};
|
|
|
|
static bool section_triangle(unsigned int section_index,
|
|
Vector3f &a,
|
|
Vector3f &b,
|
|
Vector3f &c) {
|
|
if (section_index >= 80) {
|
|
return false; // LCOV_EXCL_LINE
|
|
}
|
|
|
|
unsigned int i = section_index / 4;
|
|
unsigned int j = section_index % 4;
|
|
auto &t = triangles[i];
|
|
Vector3f mt[3]{(t[0] + t[1]) / 2, (t[1] + t[2]) / 2, (t[2] + t[0]) / 2};
|
|
|
|
switch (j) {
|
|
case 0:
|
|
a = mt[0];
|
|
b = mt[1];
|
|
c = mt[2];
|
|
break;
|
|
case 1:
|
|
a = t[0];
|
|
b = mt[0];
|
|
c = mt[2];
|
|
break;
|
|
case 2:
|
|
a = mt[0];
|
|
b = t[1];
|
|
c = mt[1];
|
|
break;
|
|
case 3:
|
|
a = mt[2];
|
|
b = mt[1];
|
|
c = t[2];
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
AP_GTEST_PRINTATBLE_PARAM_MEMBER(TestParam, v);
|
|
|
|
TEST_P(GeodesicGridTest, Sections)
|
|
{
|
|
auto p = GetParam();
|
|
|
|
test_triangles_indexes(p);
|
|
EXPECT_EQ(p.section, AP_GeodesicGrid::section(p.v));
|
|
|
|
if (p.section < 0) {
|
|
int s = AP_GeodesicGrid::section(p.v, true);
|
|
int i;
|
|
for (i = 0; p.inclusive_sections[i] > 0; i++) {
|
|
assert(i < 7);
|
|
if (s == p.inclusive_sections[i]) {
|
|
break;
|
|
}
|
|
}
|
|
if (p.inclusive_sections[i] < 0) {
|
|
ADD_FAILURE() << "section " << s << " with inclusive=true not found in inclusive_sections"; // LCOV_EXCL_LINE
|
|
}
|
|
}
|
|
}
|
|
|
|
static TestParam icosahedron_vertices[] = {
|
|
{{ M_GOLDEN, 1.0f, 0.0f}, -1, {27, 30, 43, 46, 49, -1}},
|
|
{{ M_GOLDEN, -1.0f, 0.0f}, -1, {19, 23, 25, 41, 78, -1}},
|
|
{{-M_GOLDEN, 1.0f, 0.0f}, -1, { 1, 38, 59, 63, 65, -1}},
|
|
{{-M_GOLDEN, -1.0f, 0.0f}, -1, { 3, 6, 9, 67, 70, -1}},
|
|
{{ 1.0f, 0.0f, M_GOLDEN}, -1, {42, 45, 53, 75, 79, -1}},
|
|
{{-1.0f, 0.0f, M_GOLDEN}, -1, {55, 62, 66, 69, 73, -1}},
|
|
{{ 1.0f, 0.0f, -M_GOLDEN}, -1, {15, 22, 26, 29, 33, -1}},
|
|
{{-1.0f, 0.0f, -M_GOLDEN}, -1, { 2, 5, 13, 35, 39, -1}},
|
|
{{0.0f, M_GOLDEN, 1.0f}, -1, {47, 50, 54, 57, 61, -1}},
|
|
{{0.0f, M_GOLDEN, -1.0f}, -1, {31, 34, 37, 51, 58, -1}},
|
|
{{0.0f, -M_GOLDEN, 1.0f}, -1, {11, 18, 71, 74, 77, -1}},
|
|
{{0.0f, -M_GOLDEN, -1.0f}, -1, { 7, 10, 14, 17, 21, -1}},
|
|
};
|
|
INSTANTIATE_TEST_CASE_P(IcosahedronVertices,
|
|
GeodesicGridTest,
|
|
::testing::ValuesIn(icosahedron_vertices));
|
|
|
|
/* Generate vectors for each triangle */
|
|
static std::vector<TestParam> general_vectors = []()
|
|
{
|
|
std::vector<TestParam> params;
|
|
for (int i = 0; i < 20 * AP_GeodesicGrid::NUM_SUBTRIANGLES; i++) {
|
|
Vector3f a, b, c;
|
|
TestParam p;
|
|
section_triangle(i, a, b, c);
|
|
p.section = i;
|
|
|
|
/* Vector that crosses the centroid */
|
|
p.v = a + b + c;
|
|
params.push_back(p);
|
|
|
|
/* Vectors that cross the triangle close to the edges */
|
|
p.v = a + b + c * 0.001f;
|
|
params.push_back(p);
|
|
p.v = a + b * 0.001f + c;
|
|
params.push_back(p);
|
|
p.v = a * 0.001f + b + c;
|
|
params.push_back(p);
|
|
|
|
/* Vectors that cross the triangle close to the vertices */
|
|
p.v = a + b * 0.001 + c * 0.001f;
|
|
params.push_back(p);
|
|
p.v = a * 0.001f + b + c * 0.001f;
|
|
params.push_back(p);
|
|
p.v = a * 0.001f + b * 0.001f + c;
|
|
params.push_back(p);
|
|
}
|
|
return params;
|
|
}();
|
|
INSTANTIATE_TEST_CASE_P(GeneralVectors,
|
|
GeodesicGridTest,
|
|
::testing::ValuesIn(general_vectors));
|
|
|
|
/* Other hardcoded vectors, so we don't rely just on the centroid vectors
|
|
* (which are dependent on how the triangles are *defined by the
|
|
* implementation*)
|
|
*
|
|
* See AP_GeodesicGrid.h for the notation on the comments below.
|
|
*/
|
|
static TestParam hardcoded_vectors[] = {
|
|
/* a + 2 * m_a + .5 * m_c for T_4 */
|
|
{{.25f * M_GOLDEN, -.25f * (13.0f * M_GOLDEN + 1.0f), - 1.25f}, 17},
|
|
/* 3 * m_a + 2 * m_b 0 * m_c for T_4 */
|
|
{{M_GOLDEN, -4.0f * M_GOLDEN -1.0f, 1.0f}, -1, {16, 18, -1}},
|
|
/* 2 * m_c + (1 / 3) * m_b + .1 * c for T_13 */
|
|
{{-.2667f, .1667f * M_GOLDEN, 2.2667f * M_GOLDEN + .1667f}, 55},
|
|
/* .25 * m_a + 5 * b + 2 * m_b for T_8 */
|
|
{{-.875f, 6.125f * M_GOLDEN, -1.125f * M_GOLDEN - 6.125f}, 34},
|
|
};
|
|
INSTANTIATE_TEST_CASE_P(HardcodedVectors,
|
|
GeodesicGridTest,
|
|
::testing::ValuesIn(hardcoded_vectors));
|
|
|
|
AP_GTEST_MAIN()
|