mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 23:18:28 -04:00
61c8dfac31
this allows ALLOW_DOUBLE_MATH_FUNCTIONS to be used
243 lines
7.3 KiB
C++
243 lines
7.3 KiB
C++
/*
|
|
* location.cpp
|
|
* Copyright (C) Andrew Tridgell 2011
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* this module deals with calculations involving struct Location
|
|
*/
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <stdlib.h>
|
|
#include "AP_Math.h"
|
|
#include "location.h"
|
|
|
|
float longitude_scale(const struct Location &loc)
|
|
{
|
|
float scale = cosf(loc.lat * 1.0e-7f * DEG_TO_RAD);
|
|
return constrain_float(scale, 0.01f, 1.0f);
|
|
}
|
|
|
|
|
|
|
|
// return distance in meters between two locations
|
|
float get_distance(const struct Location &loc1, const struct Location &loc2)
|
|
{
|
|
float dlat = (float)(loc2.lat - loc1.lat);
|
|
float dlong = ((float)(loc2.lng - loc1.lng)) * longitude_scale(loc2);
|
|
return norm(dlat, dlong) * LOCATION_SCALING_FACTOR;
|
|
}
|
|
|
|
// return distance in centimeters to between two locations
|
|
uint32_t get_distance_cm(const struct Location &loc1, const struct Location &loc2)
|
|
{
|
|
return get_distance(loc1, loc2) * 100;
|
|
}
|
|
|
|
// return horizontal distance between two positions in cm
|
|
float get_horizontal_distance_cm(const Vector3f &origin, const Vector3f &destination)
|
|
{
|
|
return norm(destination.x-origin.x,destination.y-origin.y);
|
|
}
|
|
|
|
// return bearing in centi-degrees between two locations
|
|
int32_t get_bearing_cd(const struct Location &loc1, const struct Location &loc2)
|
|
{
|
|
int32_t off_x = loc2.lng - loc1.lng;
|
|
int32_t off_y = (loc2.lat - loc1.lat) / longitude_scale(loc2);
|
|
int32_t bearing = 9000 + atan2f(-off_y, off_x) * DEGX100;
|
|
if (bearing < 0) bearing += 36000;
|
|
return bearing;
|
|
}
|
|
|
|
// return bearing in centi-degrees between two positions
|
|
float get_bearing_cd(const Vector3f &origin, const Vector3f &destination)
|
|
{
|
|
float bearing = atan2f(destination.y-origin.y, destination.x-origin.x) * DEGX100;
|
|
if (bearing < 0) {
|
|
bearing += 36000.0f;
|
|
}
|
|
return bearing;
|
|
}
|
|
|
|
// see if location is past a line perpendicular to
|
|
// the line between point1 and point2. If point1 is
|
|
// our previous waypoint and point2 is our target waypoint
|
|
// then this function returns true if we have flown past
|
|
// the target waypoint
|
|
bool location_passed_point(const struct Location &location,
|
|
const struct Location &point1,
|
|
const struct Location &point2)
|
|
{
|
|
return location_path_proportion(location, point1, point2) >= 1.0f;
|
|
}
|
|
|
|
|
|
/*
|
|
return the proportion we are along the path from point1 to
|
|
point2, along a line parallel to point1<->point2.
|
|
|
|
This will be less than >1 if we have passed point2
|
|
*/
|
|
float location_path_proportion(const struct Location &location,
|
|
const struct Location &point1,
|
|
const struct Location &point2)
|
|
{
|
|
Vector2f vec1 = location_diff(point1, point2);
|
|
Vector2f vec2 = location_diff(point1, location);
|
|
float dsquared = sq(vec1.x) + sq(vec1.y);
|
|
if (dsquared < 0.001f) {
|
|
// the two points are very close together
|
|
return 1.0f;
|
|
}
|
|
return (vec1 * vec2) / dsquared;
|
|
}
|
|
|
|
/*
|
|
* extrapolate latitude/longitude given bearing and distance
|
|
* Note that this function is accurate to about 1mm at a distance of
|
|
* 100m. This function has the advantage that it works in relative
|
|
* positions, so it keeps the accuracy even when dealing with small
|
|
* distances and floating point numbers
|
|
*/
|
|
void location_update(struct Location &loc, float bearing, float distance)
|
|
{
|
|
float ofs_north = cosf(radians(bearing))*distance;
|
|
float ofs_east = sinf(radians(bearing))*distance;
|
|
location_offset(loc, ofs_north, ofs_east);
|
|
}
|
|
|
|
/*
|
|
* extrapolate latitude/longitude given distances north and east
|
|
*/
|
|
void location_offset(struct Location &loc, float ofs_north, float ofs_east)
|
|
{
|
|
if (!is_zero(ofs_north) || !is_zero(ofs_east)) {
|
|
int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV;
|
|
int32_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(loc);
|
|
loc.lat += dlat;
|
|
loc.lng += dlng;
|
|
}
|
|
}
|
|
|
|
/*
|
|
return the distance in meters in North/East plane as a N/E vector
|
|
from loc1 to loc2
|
|
*/
|
|
Vector2f location_diff(const struct Location &loc1, const struct Location &loc2)
|
|
{
|
|
return Vector2f((loc2.lat - loc1.lat) * LOCATION_SCALING_FACTOR,
|
|
(loc2.lng - loc1.lng) * LOCATION_SCALING_FACTOR * longitude_scale(loc1));
|
|
}
|
|
|
|
/*
|
|
return the distance in meters in North/East/Down plane as a N/E/D vector
|
|
from loc1 to loc2
|
|
*/
|
|
Vector3f location_3d_diff_NED(const struct Location &loc1, const struct Location &loc2)
|
|
{
|
|
return Vector3f((loc2.lat - loc1.lat) * LOCATION_SCALING_FACTOR,
|
|
(loc2.lng - loc1.lng) * LOCATION_SCALING_FACTOR * longitude_scale(loc1),
|
|
(loc1.alt - loc2.alt) * 0.01f);
|
|
}
|
|
|
|
/*
|
|
return true if lat and lng match. Ignores altitude and options
|
|
*/
|
|
bool locations_are_same(const struct Location &loc1, const struct Location &loc2) {
|
|
return (loc1.lat == loc2.lat) && (loc1.lng == loc2.lng);
|
|
}
|
|
|
|
/*
|
|
* convert invalid waypoint with useful data. return true if location changed
|
|
*/
|
|
bool location_sanitize(const struct Location &defaultLoc, struct Location &loc)
|
|
{
|
|
bool has_changed = false;
|
|
// convert lat/lng=0 to mean current point
|
|
if (loc.lat == 0 && loc.lng == 0) {
|
|
loc.lat = defaultLoc.lat;
|
|
loc.lng = defaultLoc.lng;
|
|
has_changed = true;
|
|
}
|
|
|
|
// convert relative alt=0 to mean current alt
|
|
if (loc.alt == 0 && loc.flags.relative_alt) {
|
|
loc.flags.relative_alt = false;
|
|
loc.alt = defaultLoc.alt;
|
|
has_changed = true;
|
|
}
|
|
|
|
// limit lat/lng to appropriate ranges
|
|
if (!check_latlng(loc)) {
|
|
loc.lat = defaultLoc.lat;
|
|
loc.lng = defaultLoc.lng;
|
|
has_changed = true;
|
|
}
|
|
|
|
return has_changed;
|
|
}
|
|
|
|
/*
|
|
print a int32_t lat/long in decimal degrees
|
|
*/
|
|
void print_latlon(AP_HAL::BetterStream *s, int32_t lat_or_lon)
|
|
{
|
|
int32_t dec_portion, frac_portion;
|
|
int32_t abs_lat_or_lon = labs(lat_or_lon);
|
|
|
|
// extract decimal portion (special handling of negative numbers to ensure we round towards zero)
|
|
dec_portion = abs_lat_or_lon / 10000000UL;
|
|
|
|
// extract fractional portion
|
|
frac_portion = abs_lat_or_lon - dec_portion*10000000UL;
|
|
|
|
// print output including the minus sign
|
|
if( lat_or_lon < 0 ) {
|
|
s->printf("-");
|
|
}
|
|
s->printf("%ld.%07ld",(long)dec_portion,(long)frac_portion);
|
|
}
|
|
|
|
// return true when lat and lng are within range
|
|
bool check_lat(float lat)
|
|
{
|
|
return fabsf(lat) <= 90;
|
|
}
|
|
bool check_lng(float lng)
|
|
{
|
|
return fabsf(lng) <= 180;
|
|
}
|
|
bool check_lat(int32_t lat)
|
|
{
|
|
return labs(lat) <= 90*1e7;
|
|
}
|
|
bool check_lng(int32_t lng)
|
|
{
|
|
return labs(lng) <= 180*1e7;
|
|
}
|
|
bool check_latlng(float lat, float lng)
|
|
{
|
|
return check_lat(lat) && check_lng(lng);
|
|
}
|
|
bool check_latlng(int32_t lat, int32_t lng)
|
|
{
|
|
return check_lat(lat) && check_lng(lng);
|
|
}
|
|
bool check_latlng(Location loc)
|
|
{
|
|
return check_lat(loc.lat) && check_lng(loc.lng);
|
|
}
|