ardupilot/libraries/AP_Motors/AP_MotorsHeli_Quad.h

102 lines
3.8 KiB
C++

/// @file AP_MotorsHeli_Quad.h
/// @brief Motor control class collective pitch quad helicopter (such as stingray)
#pragma once
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h>
#include <RC_Channel/RC_Channel.h>
#include "AP_MotorsHeli.h"
#include "AP_MotorsHeli_RSC.h"
// default collective min, max and midpoints for the rear swashplate
#define AP_MOTORS_HELI_QUAD_COLLECTIVE_MIN 1100
#define AP_MOTORS_HELI_QUAD_COLLECTIVE_MAX 1900
#define AP_MOTORS_HELI_QUAD_NUM_MOTORS 4
class AP_MotorsHeli_Quad : public AP_MotorsHeli {
public:
// constructor
AP_MotorsHeli_Quad(uint16_t loop_rate,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_MotorsHeli(loop_rate, speed_hz)
{
AP_Param::setup_object_defaults(this, var_info);
};
// set_update_rate - set update rate to motors
void set_update_rate( uint16_t speed_hz ) override;
// output_to_motors - sends values out to the motors
void output_to_motors() override;
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
void set_desired_rotor_speed(float desired_speed) override;
// get_estimated_rotor_speed - gets estimated rotor speed as a number from 0 ~ 1000
float get_main_rotor_speed() const override { return _main_rotor.get_rotor_speed(); }
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000
float get_desired_rotor_speed() const override { return _main_rotor.get_rotor_speed(); }
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
bool rotor_speed_above_critical() const override { return _main_rotor.get_rotor_speed() > _main_rotor.get_critical_speed(); }
// get_governor_output
float get_governor_output() const override { return _main_rotor.get_governor_output(); }
// get_control_output
float get_control_output() const override { return _main_rotor.get_control_output(); }
// calculate_scalars - recalculates various scalars used
void calculate_scalars() override;
// calculate_armed_scalars - recalculates scalars that can change while armed
void calculate_armed_scalars() override;
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
uint32_t get_motor_mask() override;
// has_flybar - returns true if we have a mechanical flybar
bool has_flybar() const override { return AP_MOTORS_HELI_NOFLYBAR; }
// supports_yaw_passthrought - returns true if we support yaw passthrough
bool supports_yaw_passthrough() const override { return false; }
// servo_test - move servos through full range of movement
void servo_test() override;
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
// init_outputs
bool init_outputs () override;
// update_motor_controls - sends commands to motor controllers
void update_motor_control(RotorControlState state) override;
// calculate_roll_pitch_collective_factors - setup rate factors
void calculate_roll_pitch_collective_factors ();
// move_actuators - moves swash plate to attitude of parameters passed in
void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) override;
// output_test_seq - spin a motor at the pwm value specified
virtual void _output_test_seq(uint8_t motor_seq, int16_t pwm) override;
const char* _get_frame_string() const override { return "HELI_QUAD"; }
// rate factors
float _rollFactor[AP_MOTORS_HELI_QUAD_NUM_MOTORS];
float _pitchFactor[AP_MOTORS_HELI_QUAD_NUM_MOTORS];
float _collectiveFactor[AP_MOTORS_HELI_QUAD_NUM_MOTORS];
float _yawFactor[AP_MOTORS_HELI_QUAD_NUM_MOTORS];
float _out[AP_MOTORS_HELI_QUAD_NUM_MOTORS];
};