ardupilot/APMrover2/Log.cpp
2017-07-19 16:37:28 +01:00

564 lines
16 KiB
C++

#include "Rover.h"
#include "version.h"
#if LOGGING_ENABLED == ENABLED
#if CLI_ENABLED == ENABLED
// Code to interact with the user to dump or erase logs
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
static const struct Menu::command log_menu_commands[] = {
{"dump", MENU_FUNC(dump_log)},
{"erase", MENU_FUNC(erase_logs)},
{"enable", MENU_FUNC(select_logs)},
{"disable", MENU_FUNC(select_logs)}
};
// A Macro to create the Menu
MENU2(log_menu, "Log", log_menu_commands, FUNCTOR_BIND(&rover, &Rover::print_log_menu, bool));
bool Rover::print_log_menu(void)
{
cliSerial->printf("logs enabled: ");
if (0 == g.log_bitmask) {
cliSerial->printf("none");
} else {
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// the bit being set and print the name of the log option to suit.
#define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf(" %s", #_s)
PLOG(ATTITUDE_FAST);
PLOG(ATTITUDE_MED);
PLOG(GPS);
PLOG(PM);
PLOG(CTUN);
PLOG(NTUN);
PLOG(MODE);
PLOG(IMU);
PLOG(CMD);
PLOG(CURRENT);
PLOG(RANGEFINDER);
PLOG(COMPASS);
PLOG(CAMERA);
PLOG(STEERING);
#undef PLOG
}
cliSerial->printf("\n");
DataFlash.ListAvailableLogs(cliSerial);
return(true);
}
int8_t Rover::dump_log(uint8_t argc, const Menu::arg *argv)
{
int16_t dump_log_num;
uint16_t dump_log_start;
uint16_t dump_log_end;
// check that the requested log number can be read
dump_log_num = argv[1].i;
if (dump_log_num == -2) {
DataFlash.DumpPageInfo(cliSerial);
return(-1);
} else if (dump_log_num <= 0) {
cliSerial->printf("dumping all\n");
Log_Read(0, 1, 0);
return(-1);
} else if ((argc != 2) || (static_cast<uint16_t>(dump_log_num) > DataFlash.get_num_logs())) {
cliSerial->printf("bad log number\n");
return(-1);
}
DataFlash.get_log_boundaries(dump_log_num, dump_log_start, dump_log_end);
Log_Read(static_cast<uint16_t>(dump_log_num), dump_log_start, dump_log_end);
return 0;
}
int8_t Rover::erase_logs(uint8_t argc, const Menu::arg *argv)
{
DataFlash.EnableWrites(false);
do_erase_logs();
DataFlash.EnableWrites(true);
return 0;
}
int8_t Rover::select_logs(uint8_t argc, const Menu::arg *argv)
{
uint16_t bits = 0;
if (argc != 2) {
cliSerial->printf("missing log type\n");
return(-1);
}
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// that name as the argument to the command, and set the bit in
// bits accordingly.
//
if (!strcasecmp(argv[1].str, "all")) {
bits = ~0;
} else {
#define TARG(_s) if (!strcasecmp(argv[1].str, #_s)) bits |= MASK_LOG_ ## _s
TARG(ATTITUDE_FAST);
TARG(ATTITUDE_MED);
TARG(GPS);
TARG(PM);
TARG(CTUN);
TARG(NTUN);
TARG(MODE);
TARG(IMU);
TARG(CMD);
TARG(CURRENT);
TARG(RANGEFINDER);
TARG(COMPASS);
TARG(CAMERA);
TARG(STEERING);
#undef TARG
}
if (!strcasecmp(argv[0].str, "enable")) {
g.log_bitmask.set_and_save(g.log_bitmask | bits);
} else {
g.log_bitmask.set_and_save(g.log_bitmask & ~bits);
}
return(0);
}
int8_t Rover::process_logs(uint8_t argc, const Menu::arg *argv)
{
log_menu.run();
return 0;
}
#endif // CLI_ENABLED == ENABLED
void Rover::do_erase_logs(void)
{
cliSerial->printf("\nErasing log...\n");
DataFlash.EraseAll();
cliSerial->printf("\nLog erased.\n");
}
struct PACKED log_Performance {
LOG_PACKET_HEADER;
uint64_t time_us;
uint32_t loop_time;
uint16_t main_loop_count;
uint32_t g_dt_max;
int16_t gyro_drift_x;
int16_t gyro_drift_y;
int16_t gyro_drift_z;
uint8_t i2c_lockup_count;
uint16_t ins_error_count;
uint32_t mem_avail;
};
// Write a performance monitoring packet. Total length : 19 bytes
void Rover::Log_Write_Performance()
{
struct log_Performance pkt = {
LOG_PACKET_HEADER_INIT(LOG_PERFORMANCE_MSG),
time_us : AP_HAL::micros64(),
loop_time : millis()- perf_mon_timer,
main_loop_count : mainLoop_count,
g_dt_max : G_Dt_max,
gyro_drift_x : (int16_t)(ahrs.get_gyro_drift().x * 1000),
gyro_drift_y : (int16_t)(ahrs.get_gyro_drift().y * 1000),
gyro_drift_z : (int16_t)(ahrs.get_gyro_drift().z * 1000),
i2c_lockup_count: 0,
ins_error_count : ins.error_count(),
hal.util->available_memory()
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Steering {
LOG_PACKET_HEADER;
uint64_t time_us;
float demanded_accel;
float achieved_accel;
};
// Write a steering packet
void Rover::Log_Write_Steering()
{
struct log_Steering pkt = {
LOG_PACKET_HEADER_INIT(LOG_STEERING_MSG),
time_us : AP_HAL::micros64(),
demanded_accel : lateral_acceleration,
achieved_accel : ahrs.groundspeed() * ins.get_gyro().z,
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
// Write beacon position and distances
void Rover::Log_Write_Beacon()
{
// exit immediately if feature is disabled
if (!g2.beacon.enabled()) {
return;
}
DataFlash.Log_Write_Beacon(g2.beacon);
}
struct PACKED log_Startup {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t startup_type;
uint16_t command_total;
};
void Rover::Log_Write_Startup(uint8_t type)
{
struct log_Startup pkt = {
LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG),
time_us : AP_HAL::micros64(),
startup_type : type,
command_total : mission.num_commands()
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Control_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
int16_t steer_out;
int16_t roll;
int16_t pitch;
int16_t throttle_out;
float accel_y;
};
// Write a control tuning packet. Total length : 22 bytes
void Rover::Log_Write_Control_Tuning()
{
const Vector3f accel = ins.get_accel();
struct log_Control_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_CTUN_MSG),
time_us : AP_HAL::micros64(),
steer_out : (int16_t)g2.motors.get_steering(),
roll : (int16_t)ahrs.roll_sensor,
pitch : (int16_t)ahrs.pitch_sensor,
throttle_out : (int16_t)g2.motors.get_throttle(),
accel_y : accel.y
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Nav_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
uint16_t yaw;
float wp_distance;
uint16_t target_bearing_cd;
uint16_t nav_bearing_cd;
int8_t throttle;
float xtrack_error;
};
// Write a navigation tuning packet
void Rover::Log_Write_Nav_Tuning()
{
struct log_Nav_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG),
time_us : AP_HAL::micros64(),
yaw : static_cast<uint16_t>(ahrs.yaw_sensor),
wp_distance : wp_distance,
target_bearing_cd : static_cast<uint16_t>(fabsf(nav_controller->target_bearing_cd())),
nav_bearing_cd : static_cast<uint16_t>(fabsf(nav_controller->nav_bearing_cd())),
throttle : int8_t(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)),
xtrack_error : nav_controller->crosstrack_error()
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
// Write an attitude packet
void Rover::Log_Write_Attitude()
{
const Vector3f targets(0.0f, 0.0f, 0.0f); // Rover does not have attitude targets, use place-holder for commonality with Dataflash Log_Write_Attitude message
DataFlash.Log_Write_Attitude(ahrs, targets);
#if AP_AHRS_NAVEKF_AVAILABLE
#if defined(OPTFLOW) and (OPTFLOW == ENABLED)
DataFlash.Log_Write_EKF(ahrs, optflow.enabled());
#else
DataFlash.Log_Write_EKF(ahrs, false);
#endif
DataFlash.Log_Write_AHRS2(ahrs);
#endif
DataFlash.Log_Write_POS(ahrs);
DataFlash.Log_Write_PID(LOG_PIDS_MSG, steerController.get_pid_info());
DataFlash.Log_Write_PID(LOG_PIDA_MSG, g.pidSpeedThrottle.get_pid_info());
}
struct PACKED log_Rangefinder {
LOG_PACKET_HEADER;
uint64_t time_us;
float lateral_accel;
uint16_t rangefinder1_distance;
uint16_t rangefinder2_distance;
uint16_t detected_count;
int8_t turn_angle;
uint16_t turn_time;
uint16_t ground_speed;
int8_t throttle;
};
// Write a rangefinder packet
void Rover::Log_Write_Rangefinder()
{
uint16_t turn_time = 0;
if (!is_zero(obstacle.turn_angle)) {
turn_time = AP_HAL::millis() - obstacle.detected_time_ms;
}
struct log_Rangefinder pkt = {
LOG_PACKET_HEADER_INIT(LOG_RANGEFINDER_MSG),
time_us : AP_HAL::micros64(),
lateral_accel : lateral_acceleration,
rangefinder1_distance : rangefinder.distance_cm(0),
rangefinder2_distance : rangefinder.distance_cm(1),
detected_count : obstacle.detected_count,
turn_angle : static_cast<int8_t>(obstacle.turn_angle),
turn_time : turn_time,
ground_speed : static_cast<uint16_t>(fabsf(ground_speed * 100)),
throttle : int8_t(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle))
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
void Rover::Log_Write_Current()
{
DataFlash.Log_Write_Current(battery);
// also write power status
DataFlash.Log_Write_Power();
}
struct PACKED log_Arm_Disarm {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t arm_state;
uint16_t arm_checks;
};
void Rover::Log_Arm_Disarm() {
struct log_Arm_Disarm pkt = {
LOG_PACKET_HEADER_INIT(LOG_ARM_DISARM_MSG),
time_us : AP_HAL::micros64(),
arm_state : arming.is_armed(),
arm_checks : arming.get_enabled_checks()
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
void Rover::Log_Write_RC(void)
{
DataFlash.Log_Write_RCIN();
DataFlash.Log_Write_RCOUT();
if (rssi.enabled()) {
DataFlash.Log_Write_RSSI(rssi);
}
}
struct PACKED log_Error {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t sub_system;
uint8_t error_code;
};
// Write an error packet
void Rover::Log_Write_Error(uint8_t sub_system, uint8_t error_code)
{
struct log_Error pkt = {
LOG_PACKET_HEADER_INIT(LOG_ERROR_MSG),
time_us : AP_HAL::micros64(),
sub_system : sub_system,
error_code : error_code,
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
void Rover::Log_Write_Baro(void)
{
DataFlash.Log_Write_Baro(barometer);
}
// log ahrs home and EKF origin to dataflash
void Rover::Log_Write_Home_And_Origin()
{
#if AP_AHRS_NAVEKF_AVAILABLE
// log ekf origin if set
Location ekf_orig;
if (ahrs.get_origin(ekf_orig)) {
DataFlash.Log_Write_Origin(LogOriginType::ekf_origin, ekf_orig);
}
#endif
// log ahrs home if set
if (home_is_set != HOME_UNSET) {
DataFlash.Log_Write_Origin(LogOriginType::ahrs_home, ahrs.get_home());
}
}
// guided mode logging
struct PACKED log_GuidedTarget {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t type;
float pos_target_x;
float pos_target_y;
float pos_target_z;
float vel_target_x;
float vel_target_y;
float vel_target_z;
};
// Write a Guided mode target
void Rover::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target)
{
struct log_GuidedTarget pkt = {
LOG_PACKET_HEADER_INIT(LOG_GUIDEDTARGET_MSG),
time_us : AP_HAL::micros64(),
type : target_type,
pos_target_x : pos_target.x,
pos_target_y : pos_target.y,
pos_target_z : pos_target.z,
vel_target_x : vel_target.x,
vel_target_y : vel_target.y,
vel_target_z : vel_target.z
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
// wheel encoder packet
struct PACKED log_WheelEncoder {
LOG_PACKET_HEADER;
uint64_t time_us;
float distance_0;
uint8_t quality_0;
float distance_1;
uint8_t quality_1;
};
// log wheel encoder information
void Rover::Log_Write_WheelEncoder()
{
// return immediately if no wheel encoders are enabled
if (!g2.wheel_encoder.enabled(0) && !g2.wheel_encoder.enabled(1)) {
return;
}
struct log_WheelEncoder pkt = {
LOG_PACKET_HEADER_INIT(LOG_WHEELENCODER_MSG),
time_us : AP_HAL::micros64(),
distance_0 : g2.wheel_encoder.get_distance(0),
quality_0 : (uint8_t)constrain_float(g2.wheel_encoder.get_signal_quality(0),0.0f,100.0f),
distance_1 : g2.wheel_encoder.get_distance(1),
quality_1 : (uint8_t)constrain_float(g2.wheel_encoder.get_signal_quality(1),0.0f,100.0f)
};
DataFlash.WriteBlock(&pkt, sizeof(pkt));
}
const LogStructure Rover::log_structure[] = {
LOG_COMMON_STRUCTURES,
{ LOG_PERFORMANCE_MSG, sizeof(log_Performance),
"PM", "QIHIhhhBHI", "TimeUS,LTime,MLC,gDt,GDx,GDy,GDz,I2CErr,INSErr,Mem" },
{ LOG_STARTUP_MSG, sizeof(log_Startup),
"STRT", "QBH", "TimeUS,SType,CTot" },
{ LOG_CTUN_MSG, sizeof(log_Control_Tuning),
"CTUN", "Qhcchf", "TimeUS,Steer,Roll,Pitch,ThrOut,AccY" },
{ LOG_NTUN_MSG, sizeof(log_Nav_Tuning),
"NTUN", "QHfHHbf", "TimeUS,Yaw,WpDist,TargBrg,NavBrg,Thr,XT" },
{ LOG_RANGEFINDER_MSG, sizeof(log_Rangefinder),
"RGFD", "QfHHHbHCb", "TimeUS,LatAcc,R1Dist,R2Dist,DCnt,TAng,TTim,Spd,Thr" },
{ LOG_ARM_DISARM_MSG, sizeof(log_Arm_Disarm),
"ARM", "QBH", "TimeUS,ArmState,ArmChecks" },
{ LOG_STEERING_MSG, sizeof(log_Steering),
"STER", "Qff", "TimeUS,Demanded,Achieved" },
{ LOG_GUIDEDTARGET_MSG, sizeof(log_GuidedTarget),
"GUID", "QBffffff", "TimeUS,Type,pX,pY,pZ,vX,vY,vZ" },
{ LOG_ERROR_MSG, sizeof(log_Error),
"ERR", "QBB", "TimeUS,Subsys,ECode" },
{ LOG_WHEELENCODER_MSG, sizeof(log_WheelEncoder),
"WENC", "Qfbfb", "TimeUS,Dist0,Qual0,Dist1,Qual1" },
};
void Rover::log_init(void)
{
DataFlash.Init(log_structure, ARRAY_SIZE(log_structure));
gcs().reset_cli_timeout();
}
#if CLI_ENABLED == ENABLED
// Read the DataFlash log memory : Packet Parser
void Rover::Log_Read(uint16_t list_entry, uint16_t start_page, uint16_t end_page)
{
cliSerial->printf("\n" FIRMWARE_STRING
"\nFree RAM: %u\n",
static_cast<uint32_t>(hal.util->available_memory()));
cliSerial->printf("%s\n", HAL_BOARD_NAME);
DataFlash.LogReadProcess(list_entry, start_page, end_page,
FUNCTOR_BIND_MEMBER(&Rover::print_mode, void, AP_HAL::BetterStream *, uint8_t),
cliSerial);
}
#endif // CLI_ENABLED
void Rover::Log_Write_Vehicle_Startup_Messages()
{
// only 200(?) bytes are guaranteed by DataFlash
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
DataFlash.Log_Write_Mode(control_mode);
Log_Write_Home_And_Origin();
gps.Write_DataFlash_Log_Startup_messages();
}
// start a new log
void Rover::start_logging()
{
DataFlash.EnableWrites(false);
DataFlash.StartUnstartedLogging();
DataFlash.EnableWrites(true);
}
#else // LOGGING_ENABLED
// dummy functions
void Rover::Log_Write_Startup(uint8_t type) {}
void Rover::Log_Write_Current() {}
void Rover::Log_Write_Nav_Tuning() {}
void Rover::Log_Write_Performance() {}
int8_t Rover::process_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
void Rover::Log_Write_Control_Tuning() {}
void Rover::Log_Write_Rangefinder() {}
void Rover::Log_Write_Attitude() {}
void Rover::start_logging() {}
void Rover::Log_Write_RC(void) {}
void Rover::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) {}
void Rover::Log_Write_Home_And_Origin() {}
void Rover::Log_Write_Baro(void) {}
void Rover::Log_Arm_Disarm() {}
void Rover::Log_Write_Error(uint8_t sub_system, uint8_t error_code) {}
void Rover::Log_Write_Steering() {}
void Rover::Log_Write_WheelEncoder() {}
#endif // LOGGING_ENABLED