mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-02 14:13:42 -04:00
901 lines
32 KiB
C++
901 lines
32 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
//
|
|
// UAVCAN GPS driver
|
|
//
|
|
#include "AP_GPS_config.h"
|
|
|
|
#if AP_GPS_DRONECAN_ENABLED
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_GPS_DroneCAN.h"
|
|
|
|
#include <AP_CANManager/AP_CANManager.h>
|
|
#include <AP_DroneCAN/AP_DroneCAN.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
#include <AP_Logger/AP_Logger.h>
|
|
|
|
#include <stdio.h>
|
|
#include <AP_BoardConfig/AP_BoardConfig.h>
|
|
|
|
#define GPS_PPS_EMULATION 0
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define GPS_UAVCAN_DEBUGGING 0
|
|
|
|
#if GPS_UAVCAN_DEBUGGING
|
|
#if defined(HAL_BUILD_AP_PERIPH)
|
|
extern "C" {
|
|
void can_printf(const char *fmt, ...);
|
|
}
|
|
# define Debug(fmt, args ...) do {can_printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args);} while(0)
|
|
#else
|
|
# define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0)
|
|
#endif
|
|
#else
|
|
# define Debug(fmt, args ...)
|
|
#endif
|
|
|
|
#define LOG_TAG "GPS"
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
#define NATIVE_TIME_OFFSET (AP_HAL::micros64() - AP_HAL::micros64())
|
|
#else
|
|
#define NATIVE_TIME_OFFSET 0
|
|
#endif
|
|
AP_GPS_DroneCAN::DetectedModules AP_GPS_DroneCAN::_detected_modules[];
|
|
HAL_Semaphore AP_GPS_DroneCAN::_sem_registry;
|
|
|
|
// Member Methods
|
|
AP_GPS_DroneCAN::AP_GPS_DroneCAN(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_GPS::GPS_Role _role) :
|
|
AP_GPS_Backend(_gps, _state, nullptr),
|
|
interim_state(_state),
|
|
role(_role)
|
|
{
|
|
param_int_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_DroneCAN::handle_param_get_set_response_int, bool, AP_DroneCAN*, const uint8_t, const char*, int32_t &);
|
|
param_float_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_DroneCAN::handle_param_get_set_response_float, bool, AP_DroneCAN*, const uint8_t, const char*, float &);
|
|
param_save_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_DroneCAN::handle_param_save_response, void, AP_DroneCAN*, const uint8_t, bool);
|
|
}
|
|
|
|
AP_GPS_DroneCAN::~AP_GPS_DroneCAN()
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
_detected_modules[_detected_module].driver = nullptr;
|
|
|
|
#if GPS_MOVING_BASELINE
|
|
if (rtcm3_parser != nullptr) {
|
|
delete rtcm3_parser;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void AP_GPS_DroneCAN::subscribe_msgs(AP_DroneCAN* ap_dronecan)
|
|
{
|
|
if (ap_dronecan == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_fix2_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) {
|
|
AP_BoardConfig::allocation_error("status_sub");
|
|
}
|
|
|
|
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_aux_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) {
|
|
AP_BoardConfig::allocation_error("status_sub");
|
|
}
|
|
|
|
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_heading_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) {
|
|
AP_BoardConfig::allocation_error("status_sub");
|
|
}
|
|
|
|
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_status_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) {
|
|
AP_BoardConfig::allocation_error("status_sub");
|
|
}
|
|
#if GPS_MOVING_BASELINE
|
|
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_moving_baseline_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) {
|
|
AP_BoardConfig::allocation_error("moving_baseline_sub");
|
|
}
|
|
|
|
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_relposheading_msg_trampoline, ap_dronecan->get_driver_index()) == nullptr) {
|
|
AP_BoardConfig::allocation_error("relposheading_sub");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
AP_GPS_Backend* AP_GPS_DroneCAN::probe(AP_GPS &_gps, AP_GPS::GPS_State &_state)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
int8_t found_match = -1, last_match = -1;
|
|
AP_GPS_DroneCAN* backend = nullptr;
|
|
bool bad_override_config = false;
|
|
for (int8_t i = GPS_MAX_RECEIVERS - 1; i >= 0; i--) {
|
|
if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_dronecan != nullptr) {
|
|
if (_gps._override_node_id[_state.instance] != 0 &&
|
|
_gps._override_node_id[_state.instance] != _detected_modules[i].node_id) {
|
|
continue; // This device doesn't match the correct node
|
|
}
|
|
last_match = found_match;
|
|
for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) {
|
|
if (_detected_modules[i].node_id == _gps._override_node_id[j] &&
|
|
(j != _state.instance)) {
|
|
//wrong instance
|
|
found_match = -1;
|
|
break;
|
|
}
|
|
found_match = i;
|
|
}
|
|
|
|
// Handle Duplicate overrides
|
|
for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) {
|
|
if (_gps._override_node_id[i] != 0 && (i != j) &&
|
|
_gps._override_node_id[i] == _gps._override_node_id[j]) {
|
|
bad_override_config = true;
|
|
}
|
|
}
|
|
if (bad_override_config) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Same Node Id %lu set for multiple GPS", (unsigned long int)_gps._override_node_id[i].get());
|
|
last_match = i;
|
|
}
|
|
|
|
if (found_match == -1) {
|
|
found_match = last_match;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found_match == -1) {
|
|
return NULL;
|
|
}
|
|
// initialise the backend based on the UAVCAN Moving baseline selection
|
|
switch (_gps.get_type(_state.instance)) {
|
|
case AP_GPS::GPS_TYPE_UAVCAN:
|
|
backend = new AP_GPS_DroneCAN(_gps, _state, AP_GPS::GPS_ROLE_NORMAL);
|
|
break;
|
|
#if GPS_MOVING_BASELINE
|
|
case AP_GPS::GPS_TYPE_UAVCAN_RTK_BASE:
|
|
backend = new AP_GPS_DroneCAN(_gps, _state, AP_GPS::GPS_ROLE_MB_BASE);
|
|
break;
|
|
case AP_GPS::GPS_TYPE_UAVCAN_RTK_ROVER:
|
|
backend = new AP_GPS_DroneCAN(_gps, _state, AP_GPS::GPS_ROLE_MB_ROVER);
|
|
break;
|
|
#endif
|
|
default:
|
|
return NULL;
|
|
}
|
|
if (backend == nullptr) {
|
|
AP::can().log_text(AP_CANManager::LOG_ERROR,
|
|
LOG_TAG,
|
|
"Failed to register DroneCAN GPS Node %d on Bus %d\n",
|
|
_detected_modules[found_match].node_id,
|
|
_detected_modules[found_match].ap_dronecan->get_driver_index());
|
|
} else {
|
|
_detected_modules[found_match].driver = backend;
|
|
backend->_detected_module = found_match;
|
|
AP::can().log_text(AP_CANManager::LOG_INFO,
|
|
LOG_TAG,
|
|
"Registered DroneCAN GPS Node %d on Bus %d as instance %d\n",
|
|
_detected_modules[found_match].node_id,
|
|
_detected_modules[found_match].ap_dronecan->get_driver_index(),
|
|
_state.instance);
|
|
snprintf(backend->_name, ARRAY_SIZE(backend->_name), "DroneCAN%u-%u", _detected_modules[found_match].ap_dronecan->get_driver_index()+1, _detected_modules[found_match].node_id);
|
|
_detected_modules[found_match].instance = _state.instance;
|
|
for (uint8_t i=0; i < GPS_MAX_RECEIVERS; i++) {
|
|
if (_detected_modules[found_match].node_id == AP::gps()._node_id[i]) {
|
|
if (i == _state.instance) {
|
|
// Nothing to do here
|
|
break;
|
|
}
|
|
// else swap
|
|
uint8_t tmp = AP::gps()._node_id[_state.instance].get();
|
|
AP::gps()._node_id[_state.instance].set_and_notify(_detected_modules[found_match].node_id);
|
|
AP::gps()._node_id[i].set_and_notify(tmp);
|
|
}
|
|
}
|
|
#if GPS_MOVING_BASELINE
|
|
if (backend->role == AP_GPS::GPS_ROLE_MB_BASE) {
|
|
backend->rtcm3_parser = new RTCM3_Parser;
|
|
if (backend->rtcm3_parser == nullptr) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "DroneCAN%u-%u: failed RTCMv3 parser allocation", _detected_modules[found_match].ap_dronecan->get_driver_index()+1, _detected_modules[found_match].node_id);
|
|
}
|
|
}
|
|
#endif // GPS_MOVING_BASELINE
|
|
}
|
|
|
|
return backend;
|
|
}
|
|
|
|
bool AP_GPS_DroneCAN::backends_healthy(char failure_msg[], uint16_t failure_msg_len)
|
|
{
|
|
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
|
|
bool overriden_node_found = false;
|
|
bool bad_override_config = false;
|
|
if (AP::gps()._override_node_id[i] == 0) {
|
|
//anything goes
|
|
continue;
|
|
}
|
|
for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) {
|
|
if (AP::gps()._override_node_id[i] == AP::gps()._override_node_id[j] && (i != j)) {
|
|
bad_override_config = true;
|
|
break;
|
|
}
|
|
if (i == _detected_modules[j].instance && _detected_modules[j].driver) {
|
|
if (AP::gps()._override_node_id[i] == _detected_modules[j].node_id) {
|
|
overriden_node_found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (bad_override_config) {
|
|
snprintf(failure_msg, failure_msg_len, "Same Node Id %lu set for multiple GPS", (unsigned long int)AP::gps()._override_node_id[i].get());
|
|
return false;
|
|
}
|
|
|
|
if (!overriden_node_found) {
|
|
snprintf(failure_msg, failure_msg_len, "Selected GPS Node %lu not set as instance %d", (unsigned long int)AP::gps()._override_node_id[i].get(), i + 1);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
AP_GPS_DroneCAN* AP_GPS_DroneCAN::get_dronecan_backend(AP_DroneCAN* ap_dronecan, uint8_t node_id)
|
|
{
|
|
if (ap_dronecan == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
|
|
if (_detected_modules[i].driver != nullptr &&
|
|
_detected_modules[i].ap_dronecan == ap_dronecan &&
|
|
_detected_modules[i].node_id == node_id) {
|
|
return _detected_modules[i].driver;
|
|
}
|
|
}
|
|
|
|
bool already_detected = false;
|
|
// Check if there's an empty spot for possible registeration
|
|
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
|
|
if (_detected_modules[i].ap_dronecan == ap_dronecan && _detected_modules[i].node_id == node_id) {
|
|
// Already Detected
|
|
already_detected = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!already_detected) {
|
|
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
|
|
if (_detected_modules[i].ap_dronecan == nullptr) {
|
|
_detected_modules[i].ap_dronecan = ap_dronecan;
|
|
_detected_modules[i].node_id = node_id;
|
|
// Just set the Node ID in order of appearance
|
|
// This will be used to set select ids
|
|
AP::gps()._node_id[i].set_and_notify(node_id);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
struct DetectedModules tempslot;
|
|
// Sort based on the node_id, larger values first
|
|
// we do this, so that we have repeatable GPS
|
|
// registration
|
|
for (uint8_t i = 1; i < GPS_MAX_RECEIVERS; i++) {
|
|
for (uint8_t j = i; j > 0; j--) {
|
|
if (_detected_modules[j].node_id > _detected_modules[j-1].node_id) {
|
|
tempslot = _detected_modules[j];
|
|
_detected_modules[j] = _detected_modules[j-1];
|
|
_detected_modules[j-1] = tempslot;
|
|
// also fix the _detected_module in the driver so that RTCM injection
|
|
// can determine if it has the bus to itself
|
|
if (_detected_modules[j].driver) {
|
|
_detected_modules[j].driver->_detected_module = j;
|
|
}
|
|
if (_detected_modules[j-1].driver) {
|
|
_detected_modules[j-1].driver->_detected_module = j-1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
handle velocity element of message
|
|
*/
|
|
void AP_GPS_DroneCAN::handle_velocity(const float vx, const float vy, const float vz)
|
|
{
|
|
if (!isnan(vx)) {
|
|
const Vector3f vel(vx, vy, vz);
|
|
interim_state.velocity = vel;
|
|
velocity_to_speed_course(interim_state);
|
|
// assume we have vertical velocity if we ever get a non-zero Z velocity
|
|
if (!isnan(vel.z) && !is_zero(vel.z)) {
|
|
interim_state.have_vertical_velocity = true;
|
|
} else {
|
|
interim_state.have_vertical_velocity = state.have_vertical_velocity;
|
|
}
|
|
} else {
|
|
interim_state.have_vertical_velocity = false;
|
|
}
|
|
}
|
|
|
|
void AP_GPS_DroneCAN::handle_fix2_msg(const uavcan_equipment_gnss_Fix2& msg, uint64_t timestamp_usec)
|
|
{
|
|
bool process = false;
|
|
seen_fix2 = true;
|
|
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
if (msg.status == UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_NO_FIX) {
|
|
interim_state.status = AP_GPS::GPS_Status::NO_FIX;
|
|
} else {
|
|
if (msg.status == UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_TIME_ONLY) {
|
|
interim_state.status = AP_GPS::GPS_Status::NO_FIX;
|
|
} else if (msg.status == UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_2D_FIX) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_2D;
|
|
process = true;
|
|
} else if (msg.status == UAVCAN_EQUIPMENT_GNSS_FIX2_STATUS_3D_FIX) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D;
|
|
process = true;
|
|
}
|
|
|
|
if (msg.gnss_time_standard == UAVCAN_EQUIPMENT_GNSS_FIX2_GNSS_TIME_STANDARD_UTC) {
|
|
uint64_t epoch_ms = msg.gnss_timestamp.usec;
|
|
if (epoch_ms != 0) {
|
|
epoch_ms /= 1000;
|
|
uint64_t gps_ms = epoch_ms - UNIX_OFFSET_MSEC;
|
|
interim_state.time_week = (uint16_t)(gps_ms / AP_MSEC_PER_WEEK);
|
|
interim_state.time_week_ms = (uint32_t)(gps_ms - (interim_state.time_week) * AP_MSEC_PER_WEEK);
|
|
}
|
|
}
|
|
|
|
if (interim_state.status == AP_GPS::GPS_Status::GPS_OK_FIX_3D) {
|
|
if (msg.mode == UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_DGPS) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_DGPS;
|
|
} else if (msg.mode == UAVCAN_EQUIPMENT_GNSS_FIX2_MODE_RTK) {
|
|
if (msg.sub_mode == UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_RTK_FLOAT) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FLOAT;
|
|
} else if (msg.sub_mode == UAVCAN_EQUIPMENT_GNSS_FIX2_SUB_MODE_RTK_FIXED) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FIXED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (process) {
|
|
Location loc = { };
|
|
loc.lat = msg.latitude_deg_1e8 / 10;
|
|
loc.lng = msg.longitude_deg_1e8 / 10;
|
|
const int32_t alt_amsl_cm = msg.height_msl_mm / 10;
|
|
interim_state.have_undulation = true;
|
|
interim_state.undulation = (msg.height_msl_mm - msg.height_ellipsoid_mm) * 0.001;
|
|
interim_state.location = loc;
|
|
set_alt_amsl_cm(interim_state, alt_amsl_cm);
|
|
|
|
handle_velocity(msg.ned_velocity[0], msg.ned_velocity[1], msg.ned_velocity[2]);
|
|
|
|
if (msg.covariance.len == 6) {
|
|
if (!isnan(msg.covariance.data[0])) {
|
|
interim_state.horizontal_accuracy = sqrtf(msg.covariance.data[0]);
|
|
interim_state.have_horizontal_accuracy = true;
|
|
} else {
|
|
interim_state.have_horizontal_accuracy = false;
|
|
}
|
|
if (!isnan(msg.covariance.data[2])) {
|
|
interim_state.vertical_accuracy = sqrtf(msg.covariance.data[2]);
|
|
interim_state.have_vertical_accuracy = true;
|
|
} else {
|
|
interim_state.have_vertical_accuracy = false;
|
|
}
|
|
if (!isnan(msg.covariance.data[3]) &&
|
|
!isnan(msg.covariance.data[4]) &&
|
|
!isnan(msg.covariance.data[5])) {
|
|
interim_state.speed_accuracy = sqrtf((msg.covariance.data[3] + msg.covariance.data[4] + msg.covariance.data[5])/3);
|
|
interim_state.have_speed_accuracy = true;
|
|
} else {
|
|
interim_state.have_speed_accuracy = false;
|
|
}
|
|
}
|
|
|
|
interim_state.num_sats = msg.sats_used;
|
|
} else {
|
|
interim_state.have_vertical_velocity = false;
|
|
interim_state.have_vertical_accuracy = false;
|
|
interim_state.have_horizontal_accuracy = false;
|
|
interim_state.have_speed_accuracy = false;
|
|
interim_state.num_sats = 0;
|
|
}
|
|
|
|
if (!seen_aux) {
|
|
// if we haven't seen an Aux message then populate vdop and
|
|
// hdop from pdop. Some GPS modules don't provide the Aux message
|
|
interim_state.hdop = interim_state.vdop = msg.pdop * 100.0;
|
|
}
|
|
|
|
if ((msg.timestamp.usec > msg.gnss_timestamp.usec) && (msg.gnss_timestamp.usec > 0)) {
|
|
// we have a valid timestamp based on gnss_timestamp timescale, we can use that to correct our gps message time
|
|
interim_state.last_corrected_gps_time_us = jitter_correction.correct_offboard_timestamp_usec(msg.timestamp.usec, (timestamp_usec + NATIVE_TIME_OFFSET));
|
|
interim_state.last_gps_time_ms = interim_state.last_corrected_gps_time_us/1000U;
|
|
interim_state.last_corrected_gps_time_us -= msg.timestamp.usec - msg.gnss_timestamp.usec;
|
|
// this is also the time the message was received on the UART on other end.
|
|
interim_state.corrected_timestamp_updated = true;
|
|
} else {
|
|
interim_state.last_gps_time_ms = jitter_correction.correct_offboard_timestamp_usec(msg.timestamp.usec, timestamp_usec + NATIVE_TIME_OFFSET)/1000U;
|
|
}
|
|
|
|
#if GPS_PPS_EMULATION
|
|
// Emulates a PPS signal, can be used to check how close are we to real GPS time
|
|
static virtual_timer_t timeout_vt;
|
|
hal.gpio->pinMode(51, 1);
|
|
auto handle_timeout = [](void *arg)
|
|
{
|
|
(void)arg;
|
|
//we are called from ISR context
|
|
chSysLockFromISR();
|
|
hal.gpio->toggle(51);
|
|
chSysUnlockFromISR();
|
|
};
|
|
|
|
static uint64_t next_toggle, last_toggle;
|
|
|
|
next_toggle = (msg.timestamp.usec) + (1000000ULL - ((msg.timestamp.usec) % 1000000ULL));
|
|
|
|
next_toggle += jitter_correction.get_link_offset_usec();
|
|
if (next_toggle != last_toggle) {
|
|
chVTSet(&timeout_vt, chTimeUS2I(next_toggle - AP_HAL::micros64()), handle_timeout, nullptr);
|
|
last_toggle = next_toggle;
|
|
}
|
|
#endif
|
|
|
|
_new_data = true;
|
|
if (!seen_message) {
|
|
if (interim_state.status == AP_GPS::GPS_Status::NO_GPS) {
|
|
// the first time we see a fix message we change from
|
|
// NO_GPS to NO_FIX, indicating to user that a DroneCAN GPS
|
|
// has been seen
|
|
interim_state.status = AP_GPS::GPS_Status::NO_FIX;
|
|
}
|
|
seen_message = true;
|
|
}
|
|
}
|
|
|
|
void AP_GPS_DroneCAN::handle_aux_msg(const uavcan_equipment_gnss_Auxiliary& msg)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
if (!isnan(msg.hdop)) {
|
|
seen_aux = true;
|
|
interim_state.hdop = msg.hdop * 100.0;
|
|
}
|
|
|
|
if (!isnan(msg.vdop)) {
|
|
seen_aux = true;
|
|
interim_state.vdop = msg.vdop * 100.0;
|
|
}
|
|
}
|
|
|
|
void AP_GPS_DroneCAN::handle_heading_msg(const ardupilot_gnss_Heading& msg)
|
|
{
|
|
#if GPS_MOVING_BASELINE
|
|
if (seen_relposheading && gps.mb_params[interim_state.instance].type.get() != 0) {
|
|
// we prefer to use the relposheading to get yaw as it allows
|
|
// the user to more easily control the relative antenna positions
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
if (interim_state.gps_yaw_configured == false) {
|
|
interim_state.gps_yaw_configured = msg.heading_valid;
|
|
}
|
|
|
|
interim_state.have_gps_yaw = msg.heading_valid;
|
|
interim_state.gps_yaw = degrees(msg.heading_rad);
|
|
if (interim_state.have_gps_yaw) {
|
|
interim_state.gps_yaw_time_ms = AP_HAL::millis();
|
|
}
|
|
|
|
interim_state.have_gps_yaw_accuracy = msg.heading_accuracy_valid;
|
|
interim_state.gps_yaw_accuracy = degrees(msg.heading_accuracy_rad);
|
|
}
|
|
|
|
void AP_GPS_DroneCAN::handle_status_msg(const ardupilot_gnss_Status& msg)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
seen_status = true;
|
|
|
|
healthy = msg.healthy;
|
|
status_flags = msg.status;
|
|
if (error_code != msg.error_codes) {
|
|
#if HAL_LOGGING_ENABLED
|
|
AP::logger().Write_MessageF("GPS %d: error changed (0x%08x/0x%08x)",
|
|
(unsigned int)(state.instance + 1),
|
|
error_code,
|
|
msg.error_codes);
|
|
#endif
|
|
error_code = msg.error_codes;
|
|
}
|
|
}
|
|
|
|
#if GPS_MOVING_BASELINE
|
|
/*
|
|
handle moving baseline data.
|
|
*/
|
|
void AP_GPS_DroneCAN::handle_moving_baseline_msg(const ardupilot_gnss_MovingBaselineData& msg, uint8_t node_id)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
if (role != AP_GPS::GPS_ROLE_MB_BASE) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Incorrect Role set for DroneCAN GPS, %d should be Base", node_id);
|
|
return;
|
|
}
|
|
|
|
if (rtcm3_parser == nullptr) {
|
|
return;
|
|
}
|
|
for (int i=0; i < msg.data.len; i++) {
|
|
rtcm3_parser->read(msg.data.data[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
handle relposheading message
|
|
*/
|
|
void AP_GPS_DroneCAN::handle_relposheading_msg(const ardupilot_gnss_RelPosHeading& msg, uint8_t node_id)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
interim_state.gps_yaw_configured = true;
|
|
seen_relposheading = true;
|
|
// push raw heading data to calculate moving baseline heading states
|
|
if (calculate_moving_base_yaw(interim_state,
|
|
msg.reported_heading_deg,
|
|
msg.relative_distance_m,
|
|
msg.relative_down_pos_m)) {
|
|
if (msg.reported_heading_acc_available) {
|
|
interim_state.gps_yaw_accuracy = msg.reported_heading_acc_deg;
|
|
}
|
|
interim_state.have_gps_yaw_accuracy = msg.reported_heading_acc_available;
|
|
}
|
|
}
|
|
|
|
// support for retrieving RTCMv3 data from a moving baseline base
|
|
bool AP_GPS_DroneCAN::get_RTCMV3(const uint8_t *&bytes, uint16_t &len)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
if (rtcm3_parser != nullptr) {
|
|
len = rtcm3_parser->get_len(bytes);
|
|
return len > 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// clear previous RTCM3 packet
|
|
void AP_GPS_DroneCAN::clear_RTCMV3(void)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
if (rtcm3_parser != nullptr) {
|
|
rtcm3_parser->clear_packet();
|
|
}
|
|
}
|
|
|
|
#endif // GPS_MOVING_BASELINE
|
|
|
|
void AP_GPS_DroneCAN::handle_fix2_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_gnss_Fix2& msg)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_fix2_msg(msg, transfer.timestamp_usec);
|
|
}
|
|
}
|
|
|
|
void AP_GPS_DroneCAN::handle_aux_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_gnss_Auxiliary& msg)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_aux_msg(msg);
|
|
}
|
|
}
|
|
|
|
void AP_GPS_DroneCAN::handle_heading_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const ardupilot_gnss_Heading& msg)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_heading_msg(msg);
|
|
}
|
|
}
|
|
|
|
void AP_GPS_DroneCAN::handle_status_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const ardupilot_gnss_Status& msg)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_status_msg(msg);
|
|
}
|
|
}
|
|
|
|
#if GPS_MOVING_BASELINE
|
|
// Moving Baseline msg trampoline
|
|
void AP_GPS_DroneCAN::handle_moving_baseline_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const ardupilot_gnss_MovingBaselineData& msg)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_moving_baseline_msg(msg, transfer.source_node_id);
|
|
}
|
|
}
|
|
|
|
// RelPosHeading msg trampoline
|
|
void AP_GPS_DroneCAN::handle_relposheading_msg_trampoline(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const ardupilot_gnss_RelPosHeading& msg)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
AP_GPS_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_relposheading_msg(msg, transfer.source_node_id);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool AP_GPS_DroneCAN::do_config()
|
|
{
|
|
AP_DroneCAN *ap_dronecan = _detected_modules[_detected_module].ap_dronecan;
|
|
if (ap_dronecan == nullptr) {
|
|
return false;
|
|
}
|
|
uint8_t node_id = _detected_modules[_detected_module].node_id;
|
|
|
|
switch(cfg_step) {
|
|
case STEP_SET_TYPE:
|
|
ap_dronecan->get_parameter_on_node(node_id, "GPS_TYPE", ¶m_int_cb);
|
|
break;
|
|
case STEP_SET_MB_CAN_TX:
|
|
if (role != AP_GPS::GPS_Role::GPS_ROLE_NORMAL) {
|
|
ap_dronecan->get_parameter_on_node(node_id, "GPS_MB_ONLY_PORT", ¶m_int_cb);
|
|
} else {
|
|
cfg_step++;
|
|
}
|
|
break;
|
|
case STEP_SAVE_AND_REBOOT:
|
|
if (requires_save_and_reboot) {
|
|
ap_dronecan->save_parameters_on_node(node_id, ¶m_save_cb);
|
|
} else {
|
|
cfg_step++;
|
|
}
|
|
break;
|
|
case STEP_FINISHED:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Consume new data and mark it received
|
|
bool AP_GPS_DroneCAN::read(void)
|
|
{
|
|
if (gps._auto_config >= AP_GPS::GPS_AUTO_CONFIG_ENABLE_ALL) {
|
|
if (!do_config()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
send_rtcm();
|
|
|
|
if (_new_data) {
|
|
_new_data = false;
|
|
|
|
// the encoding of accuracies in DroneCAN can result in infinite
|
|
// values. These cause problems with blending. Use 1000m and 1000m/s instead
|
|
interim_state.horizontal_accuracy = MIN(interim_state.horizontal_accuracy, 1000.0);
|
|
interim_state.vertical_accuracy = MIN(interim_state.vertical_accuracy, 1000.0);
|
|
interim_state.speed_accuracy = MIN(interim_state.speed_accuracy, 1000.0);
|
|
|
|
state = interim_state;
|
|
if (interim_state.last_corrected_gps_time_us) {
|
|
// If we were able to get a valid last_corrected_gps_time_us
|
|
// we have had a valid GPS message time, from which we calculate
|
|
// the time of week.
|
|
_last_itow_ms = interim_state.time_week_ms;
|
|
_have_itow = true;
|
|
}
|
|
return true;
|
|
}
|
|
if (!seen_message) {
|
|
// start with NO_GPS until we get first packet
|
|
state.status = AP_GPS::GPS_Status::NO_GPS;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AP_GPS_DroneCAN::is_healthy(void) const
|
|
{
|
|
// if we don't have any health reports, assume it's healthy
|
|
if (!seen_status) {
|
|
return true;
|
|
}
|
|
return healthy;
|
|
}
|
|
|
|
bool AP_GPS_DroneCAN::logging_healthy(void) const
|
|
{
|
|
// if we don't have status, assume it's valid
|
|
if (!seen_status) {
|
|
return true;
|
|
}
|
|
|
|
return (status_flags & ARDUPILOT_GNSS_STATUS_STATUS_LOGGING) != 0;
|
|
}
|
|
|
|
bool AP_GPS_DroneCAN::is_configured(void) const
|
|
{
|
|
// if we don't have status assume it's configured
|
|
if (!seen_status) {
|
|
return true;
|
|
}
|
|
|
|
return (status_flags & ARDUPILOT_GNSS_STATUS_STATUS_ARMABLE) != 0;
|
|
}
|
|
|
|
/*
|
|
send pending RTCM data
|
|
*/
|
|
void AP_GPS_DroneCAN::send_rtcm(void)
|
|
{
|
|
if (_rtcm_stream.buf == nullptr) {
|
|
return;
|
|
}
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
const uint32_t now = AP_HAL::millis();
|
|
if (now - _rtcm_stream.last_send_ms < 20) {
|
|
// don't send more than 50 per second
|
|
return;
|
|
}
|
|
uint32_t outlen = 0;
|
|
const uint8_t *ptr = _rtcm_stream.buf->readptr(outlen);
|
|
if (ptr == nullptr || outlen == 0) {
|
|
return;
|
|
}
|
|
uavcan_equipment_gnss_RTCMStream msg {};
|
|
outlen = MIN(outlen, sizeof(msg.data.data));
|
|
msg.protocol_id = UAVCAN_EQUIPMENT_GNSS_RTCMSTREAM_PROTOCOL_ID_RTCM3;
|
|
memcpy(msg.data.data, ptr, outlen);
|
|
msg.data.len = outlen;
|
|
if (_detected_modules[_detected_module].ap_dronecan->rtcm_stream.broadcast(msg)) {
|
|
_rtcm_stream.buf->advance(outlen);
|
|
_rtcm_stream.last_send_ms = now;
|
|
}
|
|
}
|
|
|
|
/*
|
|
handle RTCM data from MAVLink GPS_RTCM_DATA, forwarding it over MAVLink
|
|
*/
|
|
void AP_GPS_DroneCAN::inject_data(const uint8_t *data, uint16_t len)
|
|
{
|
|
// we only handle this if we are the first DroneCAN GPS or we are
|
|
// using a different uavcan instance than the first GPS, as we
|
|
// send the data as broadcast on all DroneCAN device ports and we
|
|
// don't want to send duplicates
|
|
const uint32_t now_ms = AP_HAL::millis();
|
|
if (_detected_module == 0 ||
|
|
_detected_modules[_detected_module].ap_dronecan != _detected_modules[0].ap_dronecan ||
|
|
now_ms - _detected_modules[0].last_inject_ms > 2000) {
|
|
if (_rtcm_stream.buf == nullptr) {
|
|
// give enough space for a full round from a NTRIP server with all
|
|
// constellations
|
|
_rtcm_stream.buf = new ByteBuffer(2400);
|
|
if (_rtcm_stream.buf == nullptr) {
|
|
return;
|
|
}
|
|
}
|
|
_detected_modules[_detected_module].last_inject_ms = now_ms;
|
|
_rtcm_stream.buf->write(data, len);
|
|
send_rtcm();
|
|
}
|
|
}
|
|
|
|
/*
|
|
handle param get/set response
|
|
*/
|
|
bool AP_GPS_DroneCAN::handle_param_get_set_response_int(AP_DroneCAN* ap_dronecan, uint8_t node_id, const char* name, int32_t &value)
|
|
{
|
|
Debug("AP_GPS_DroneCAN: param set/get response from %d %s %ld\n", node_id, name, value);
|
|
if (strcmp(name, "GPS_TYPE") == 0 && cfg_step == STEP_SET_TYPE) {
|
|
if (role == AP_GPS::GPS_ROLE_MB_BASE && value != AP_GPS::GPS_TYPE_UBLOX_RTK_BASE) {
|
|
value = (int32_t)AP_GPS::GPS_TYPE_UBLOX_RTK_BASE;
|
|
requires_save_and_reboot = true;
|
|
return true;
|
|
} else if (role == AP_GPS::GPS_ROLE_MB_ROVER && value != AP_GPS::GPS_TYPE_UBLOX_RTK_ROVER) {
|
|
value = (int32_t)AP_GPS::GPS_TYPE_UBLOX_RTK_ROVER;
|
|
requires_save_and_reboot = true;
|
|
return true;
|
|
} else {
|
|
cfg_step++;
|
|
}
|
|
}
|
|
|
|
if (strcmp(name, "GPS_MB_ONLY_PORT") == 0 && cfg_step == STEP_SET_MB_CAN_TX) {
|
|
if (option_set(AP_GPS::UAVCAN_MBUseDedicatedBus) && !value) {
|
|
// set up so that another CAN port is used for the Moving Baseline Data
|
|
// setting this value will allow another CAN port to be used as dedicated
|
|
// line for the Moving Baseline Data
|
|
value = 1;
|
|
requires_save_and_reboot = true;
|
|
return true;
|
|
} else if (!option_set(AP_GPS::UAVCAN_MBUseDedicatedBus) && value) {
|
|
// set up so that all CAN ports are used for the Moving Baseline Data
|
|
value = 0;
|
|
requires_save_and_reboot = true;
|
|
return true;
|
|
} else {
|
|
cfg_step++;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AP_GPS_DroneCAN::handle_param_get_set_response_float(AP_DroneCAN* ap_dronecan, uint8_t node_id, const char* name, float &value)
|
|
{
|
|
Debug("AP_GPS_DroneCAN: param set/get response from %d %s %f\n", node_id, name, value);
|
|
return false;
|
|
}
|
|
|
|
void AP_GPS_DroneCAN::handle_param_save_response(AP_DroneCAN* ap_dronecan, const uint8_t node_id, bool success)
|
|
{
|
|
Debug("AP_GPS_DroneCAN: param save response from %d %s\n", node_id, success ? "success" : "failure");
|
|
|
|
if (cfg_step != STEP_SAVE_AND_REBOOT) {
|
|
return;
|
|
}
|
|
|
|
if (success) {
|
|
cfg_step++;
|
|
}
|
|
// Also send reboot command
|
|
// this is ok as we are sending from DroneCAN thread context
|
|
Debug("AP_GPS_DroneCAN: sending reboot command %d\n", node_id);
|
|
ap_dronecan->send_reboot_request(node_id);
|
|
}
|
|
|
|
#if AP_DRONECAN_SEND_GPS
|
|
bool AP_GPS_DroneCAN::instance_exists(const AP_DroneCAN* ap_dronecan)
|
|
{
|
|
for (uint8_t i=0; i<ARRAY_SIZE(_detected_modules); i++) {
|
|
if (ap_dronecan == _detected_modules[i].ap_dronecan) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
#endif // AP_DRONECAN_SEND_GPS
|
|
|
|
#endif // AP_GPS_DRONECAN_ENABLED
|