ardupilot/libraries/AP_DroneCAN/AP_DroneCAN_serial.cpp
Andrew Tridgell 77fbe1dcfb AP_DroneCAN: don't hold semaphore during CAN send
this mirrors the changes in the networking code, and ensures we don't
hold a semaphore that may be held by the main thread when we are doing
CAN sends
2024-01-10 18:07:29 +11:00

228 lines
6.3 KiB
C++

/*
map local serial ports to remote DroneCAN serial ports using the
TUNNEL_TARGETTED message
*/
#include "AP_DroneCAN.h"
#if HAL_ENABLE_DRONECAN_DRIVERS && AP_DRONECAN_SERIAL_ENABLED
#include <AP_Math/AP_Math.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
AP_DroneCAN_Serial *AP_DroneCAN_Serial::serial[HAL_MAX_CAN_PROTOCOL_DRIVERS];
#ifndef AP_DRONECAN_SERIAL_MIN_TXSIZE
#define AP_DRONECAN_SERIAL_MIN_TXSIZE 2048
#endif
#ifndef AP_DRONECAN_SERIAL_MIN_RXSIZE
#define AP_DRONECAN_SERIAL_MIN_RXSIZE 2048
#endif
/*
initialise DroneCAN serial aports
*/
void AP_DroneCAN_Serial::init(AP_DroneCAN *_dronecan)
{
if (enable == 0) {
return;
}
const uint8_t driver_index = _dronecan->get_driver_index();
if (driver_index >= ARRAY_SIZE(serial)) {
return;
}
serial[driver_index] = this;
dronecan = _dronecan;
const uint8_t base_port = driver_index == 0? AP_SERIALMANAGER_CAN_D1_PORT_1 : AP_SERIALMANAGER_CAN_D2_PORT_1;
bool need_subscriber = false;
for (uint8_t i=0; i<ARRAY_SIZE(ports); i++) {
auto &p = ports[i];
p.state.idx = base_port + i;
if (p.node > 0 && p.idx >= 0) {
p.init();
AP::serialmanager().register_port(&p);
need_subscriber = true;
}
}
if (need_subscriber) {
if (Canard::allocate_sub_arg_callback(dronecan, &handle_tunnel_targetted, dronecan->get_driver_index()) == nullptr) {
AP_BoardConfig::allocation_error("serial_tunnel_sub");
}
targetted = new Canard::Publisher<uavcan_tunnel_Targetted>(dronecan->get_canard_iface());
if (targetted == nullptr) {
AP_BoardConfig::allocation_error("serial_tunnel_pub");
}
targetted->set_timeout_ms(20);
targetted->set_priority(CANARD_TRANSFER_PRIORITY_MEDIUM);
}
}
/*
update DroneCAN serial ports
*/
void AP_DroneCAN_Serial::update(void)
{
const uint32_t now_ms = AP_HAL::millis();
for (auto &p : ports) {
if (p.baudrate == 0) {
continue;
}
if (p.writebuffer == nullptr || p.node <= 0 || p.idx < 0) {
continue;
}
uavcan_tunnel_Targetted pkt {};
uint32_t n = 0;
{
WITH_SEMAPHORE(p.sem);
uint32_t avail;
const bool send_keepalive = now_ms - p.last_send_ms > 500;
const auto *ptr = p.writebuffer->readptr(avail);
if (!send_keepalive && (ptr == nullptr || avail <= 0)) {
continue;
}
n = MIN(avail, sizeof(pkt.buffer.data));
pkt.target_node = p.node;
pkt.protocol.protocol = UAVCAN_TUNNEL_PROTOCOL_UNDEFINED;
pkt.buffer.len = n;
pkt.baudrate = p.baudrate;
pkt.serial_id = p.idx;
pkt.options = UAVCAN_TUNNEL_TARGETTED_OPTION_LOCK_PORT;
if (ptr != nullptr) {
memcpy(pkt.buffer.data, ptr, n);
}
}
if (targetted->broadcast(pkt)) {
WITH_SEMAPHORE(p.sem);
p.writebuffer->advance(n);
p.last_send_ms = now_ms;
}
}
}
/*
handle incoming tunnel serial packet
*/
void AP_DroneCAN_Serial::handle_tunnel_targetted(AP_DroneCAN *dronecan,
const CanardRxTransfer& transfer,
const uavcan_tunnel_Targetted &msg)
{
uint8_t driver_index = dronecan->get_driver_index();
if (driver_index >= ARRAY_SIZE(serial) || serial[driver_index] == nullptr) {
return;
}
auto &s = *serial[driver_index];
for (auto &p : s.ports) {
if (p.idx == msg.serial_id && transfer.source_node_id == p.node) {
WITH_SEMAPHORE(p.sem);
if (p.readbuffer != nullptr) {
p.readbuffer->write(msg.buffer.data, msg.buffer.len);
p.last_recv_us = AP_HAL::micros64();
}
break;
}
}
}
/*
initialise port
*/
void AP_DroneCAN_Serial::Port::init(void)
{
baudrate = state.baud;
begin(baudrate, 0, 0);
}
/*
available space in outgoing buffer
*/
uint32_t AP_DroneCAN_Serial::Port::txspace(void)
{
WITH_SEMAPHORE(sem);
return writebuffer != nullptr ? writebuffer->space() : 0;
}
void AP_DroneCAN_Serial::Port::_begin(uint32_t b, uint16_t rxS, uint16_t txS)
{
rxS = MAX(rxS, AP_DRONECAN_SERIAL_MIN_RXSIZE);
txS = MAX(txS, AP_DRONECAN_SERIAL_MIN_TXSIZE);
init_buffers(rxS, txS);
if (b != 0) {
baudrate = b;
}
}
size_t AP_DroneCAN_Serial::Port::_write(const uint8_t *buffer, size_t size)
{
WITH_SEMAPHORE(sem);
return writebuffer != nullptr ? writebuffer->write(buffer, size) : 0;
}
ssize_t AP_DroneCAN_Serial::Port::_read(uint8_t *buffer, uint16_t count)
{
WITH_SEMAPHORE(sem);
return readbuffer != nullptr ? readbuffer->read(buffer, count) : -1;
}
uint32_t AP_DroneCAN_Serial::Port::_available()
{
WITH_SEMAPHORE(sem);
return readbuffer != nullptr ? readbuffer->available() : 0;
}
bool AP_DroneCAN_Serial::Port::_discard_input()
{
WITH_SEMAPHORE(sem);
if (readbuffer != nullptr) {
readbuffer->clear();
}
return true;
}
/*
initialise read/write buffers
*/
bool AP_DroneCAN_Serial::Port::init_buffers(const uint32_t size_rx, const uint32_t size_tx)
{
if (size_tx == last_size_tx &&
size_rx == last_size_rx) {
return true;
}
WITH_SEMAPHORE(sem);
if (readbuffer == nullptr) {
readbuffer = new ByteBuffer(size_rx);
} else {
readbuffer->set_size_best(size_rx);
}
if (writebuffer == nullptr) {
writebuffer = new ByteBuffer(size_tx);
} else {
writebuffer->set_size_best(size_tx);
}
last_size_rx = size_rx;
last_size_tx = size_tx;
return readbuffer != nullptr && writebuffer != nullptr;
}
/*
return timestamp estimate in microseconds for when the start of
a nbytes packet arrived on the uart.
*/
uint64_t AP_DroneCAN_Serial::Port::receive_time_constraint_us(uint16_t nbytes)
{
WITH_SEMAPHORE(sem);
uint64_t last_receive_us = last_recv_us;
if (baudrate > 0) {
// assume 10 bits per byte.
uint32_t transport_time_us = (1000000UL * 10UL / baudrate) * (nbytes+available());
last_receive_us -= transport_time_us;
}
return last_receive_us;
}
#endif // HAL_ENABLE_DRONECAN_DRIVERS && AP_DRONECAN_SERIAL_ENABLED