ardupilot/ArduPlane/GCS_Mavlink.cpp
Peter Barker 2f0cb8b650 ArduPlane: use virtual method for GCS_MAVLink::handle_message
use more appropriate naming for the method.
2024-01-24 09:07:41 +11:00

1537 lines
50 KiB
C++

#include "GCS_Mavlink.h"
#include "Plane.h"
#include <AP_RPM/AP_RPM_config.h>
#include <AP_Airspeed/AP_Airspeed_config.h>
#include <AP_EFI/AP_EFI_config.h>
MAV_TYPE GCS_Plane::frame_type() const
{
#if HAL_QUADPLANE_ENABLED
return plane.quadplane.get_mav_type();
#else
return MAV_TYPE_FIXED_WING;
#endif
}
MAV_MODE GCS_MAVLINK_Plane::base_mode() const
{
uint8_t _base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (plane.control_mode->mode_number()) {
case Mode::Number::MANUAL:
case Mode::Number::TRAINING:
case Mode::Number::ACRO:
#if HAL_QUADPLANE_ENABLED
case Mode::Number::QACRO:
_base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
#endif
case Mode::Number::STABILIZE:
case Mode::Number::FLY_BY_WIRE_A:
case Mode::Number::AUTOTUNE:
case Mode::Number::FLY_BY_WIRE_B:
#if HAL_QUADPLANE_ENABLED
case Mode::Number::QSTABILIZE:
case Mode::Number::QHOVER:
case Mode::Number::QLOITER:
case Mode::Number::QLAND:
#if QAUTOTUNE_ENABLED
case Mode::Number::QAUTOTUNE:
#endif
#endif // HAL_QUADPLANE_ENABLED
case Mode::Number::CRUISE:
_base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
break;
case Mode::Number::AUTO:
case Mode::Number::RTL:
case Mode::Number::LOITER:
case Mode::Number::THERMAL:
case Mode::Number::AVOID_ADSB:
case Mode::Number::GUIDED:
case Mode::Number::CIRCLE:
case Mode::Number::TAKEOFF:
#if HAL_QUADPLANE_ENABLED
case Mode::Number::QRTL:
case Mode::Number::LOITER_ALT_QLAND:
#endif
_base_mode = MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case Mode::Number::INITIALISING:
break;
}
if (!plane.training_manual_pitch || !plane.training_manual_roll) {
_base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (plane.control_mode != &plane.mode_manual && plane.control_mode != &plane.mode_initializing) {
// stabiliser of some form is enabled
_base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (plane.g.stick_mixing != StickMixing::NONE && plane.control_mode != &plane.mode_initializing) {
if ((plane.g.stick_mixing != StickMixing::VTOL_YAW) || (plane.control_mode == &plane.mode_auto)) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
}
// we are armed if we are not initialising
if (plane.control_mode != &plane.mode_initializing && plane.arming.is_armed()) {
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
return (MAV_MODE)_base_mode;
}
uint32_t GCS_Plane::custom_mode() const
{
return plane.control_mode->mode_number();
}
MAV_STATE GCS_MAVLINK_Plane::vehicle_system_status() const
{
if (plane.control_mode == &plane.mode_initializing) {
return MAV_STATE_CALIBRATING;
}
if (plane.any_failsafe_triggered()) {
return MAV_STATE_CRITICAL;
}
if (plane.crash_state.is_crashed) {
return MAV_STATE_EMERGENCY;
}
if (plane.is_flying()) {
return MAV_STATE_ACTIVE;
}
return MAV_STATE_STANDBY;
}
void GCS_MAVLINK_Plane::send_attitude() const
{
const AP_AHRS &ahrs = AP::ahrs();
float r = ahrs.get_roll();
float p = ahrs.get_pitch();
float y = ahrs.get_yaw();
if (!(plane.flight_option_enabled(FlightOptions::GCS_REMOVE_TRIM_PITCH))) {
p -= radians(plane.g.pitch_trim);
}
#if HAL_QUADPLANE_ENABLED
if (plane.quadplane.show_vtol_view()) {
r = plane.quadplane.ahrs_view->roll;
p = plane.quadplane.ahrs_view->pitch;
y = plane.quadplane.ahrs_view->yaw;
}
#endif
const Vector3f &omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
r,
p,
y,
omega.x,
omega.y,
omega.z);
}
void GCS_MAVLINK_Plane::send_attitude_target()
{
#if HAL_QUADPLANE_ENABLED
// Check if the attitude target is valid for reporting
const uint32_t now = AP_HAL::millis();
if (now - plane.quadplane.last_att_control_ms > 100) {
return;
}
const Quaternion quat = plane.quadplane.attitude_control->get_attitude_target_quat();
const Vector3f& ang_vel = plane.quadplane.attitude_control->get_attitude_target_ang_vel();
const float throttle = plane.quadplane.attitude_control->get_throttle_in();
const float quat_out[4] {quat.q1, quat.q2, quat.q3, quat.q4};
const uint16_t typemask = 0;
mavlink_msg_attitude_target_send(
chan,
now, // time since boot (ms)
typemask, // Bitmask that tells the system what control dimensions should be ignored by the vehicle
quat_out, // Target attitude quaternion [w, x, y, z] order, zero-rotation is [1, 0, 0, 0], unit-length
ang_vel.x, // bodyframe target roll rate (rad/s)
ang_vel.y, // bodyframe target pitch rate (rad/s)
ang_vel.z, // bodyframe yaw rate (rad/s)
throttle); // Collective thrust, normalized to 0 .. 1
#endif // HAL_QUADPLANE_ENABLED
}
void GCS_MAVLINK_Plane::send_aoa_ssa()
{
AP_AHRS &ahrs = AP::ahrs();
mavlink_msg_aoa_ssa_send(
chan,
micros(),
ahrs.getAOA(),
ahrs.getSSA());
}
void GCS_MAVLINK_Plane::send_nav_controller_output() const
{
if (plane.control_mode == &plane.mode_manual) {
return;
}
#if HAL_QUADPLANE_ENABLED
const QuadPlane &quadplane = plane.quadplane;
if (quadplane.show_vtol_view() && quadplane.using_wp_nav()) {
const Vector3f &targets = quadplane.attitude_control->get_att_target_euler_cd();
const Vector2f& curr_pos = quadplane.inertial_nav.get_position_xy_cm();
const Vector2f& target_pos = quadplane.pos_control->get_pos_target_cm().xy().tofloat();
const Vector2f error = (target_pos - curr_pos) * 0.01;
mavlink_msg_nav_controller_output_send(
chan,
targets.x * 0.01,
targets.y * 0.01,
targets.z * 0.01,
degrees(error.angle()),
MIN(error.length(), UINT16_MAX),
(plane.control_mode != &plane.mode_qstabilize) ? quadplane.pos_control->get_pos_error_z_cm() * 0.01 : 0,
plane.airspeed_error * 100, // incorrect units; see PR#7933
quadplane.wp_nav->crosstrack_error());
return;
}
#endif
{
const AP_Navigation *nav_controller = plane.nav_controller;
mavlink_msg_nav_controller_output_send(
chan,
plane.nav_roll_cd * 0.01,
plane.nav_pitch_cd * 0.01,
nav_controller->nav_bearing_cd() * 0.01,
nav_controller->target_bearing_cd() * 0.01,
MIN(plane.auto_state.wp_distance, UINT16_MAX),
plane.altitude_error_cm * 0.01,
plane.airspeed_error * 100, // incorrect units; see PR#7933
nav_controller->crosstrack_error());
}
}
void GCS_MAVLINK_Plane::send_position_target_global_int()
{
if (plane.control_mode == &plane.mode_manual) {
return;
}
Location &next_WP_loc = plane.next_WP_loc;
static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000;
static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE |
POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE |
POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE;
int32_t alt = 0;
if (!next_WP_loc.is_zero()) {
UNUSED_RESULT(next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, alt));
}
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL, // targets are always global altitude
TYPE_MASK, // ignore everything except the x/y/z components
next_WP_loc.lat, // latitude as 1e7
next_WP_loc.lng, // longitude as 1e7
alt * 0.01, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
float GCS_MAVLINK_Plane::vfr_hud_airspeed() const
{
// airspeed sensors are best. While the AHRS airspeed_estimate
// will use an airspeed sensor, that value is constrained by the
// ground speed. When reporting we should send the true airspeed
// value if possible:
#if AP_AIRSPEED_ENABLED
if (plane.airspeed.enabled() && plane.airspeed.healthy()) {
return plane.airspeed.get_airspeed();
}
#endif
// airspeed estimates are OK:
float aspeed;
if (AP::ahrs().airspeed_estimate(aspeed)) {
return aspeed;
}
// lying is worst:
return 0;
}
int16_t GCS_MAVLINK_Plane::vfr_hud_throttle() const
{
return plane.throttle_percentage();
}
float GCS_MAVLINK_Plane::vfr_hud_climbrate() const
{
#if HAL_SOARING_ENABLED
if (plane.g2.soaring_controller.is_active()) {
return plane.g2.soaring_controller.get_vario_reading();
}
#endif
return GCS_MAVLINK::vfr_hud_climbrate();
}
void GCS_MAVLINK_Plane::send_wind() const
{
const Vector3f wind = AP::ahrs().wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)), // use negative, to give
// direction wind is coming from
wind.length(),
wind.z);
}
// sends a single pid info over the provided channel
void GCS_MAVLINK_Plane::send_pid_info(const AP_PIDInfo *pid_info,
const uint8_t axis, const float achieved)
{
if (pid_info == nullptr) {
return;
}
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
mavlink_msg_pid_tuning_send(chan, axis,
pid_info->target,
achieved,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
}
/*
send PID tuning message
*/
void GCS_MAVLINK_Plane::send_pid_tuning()
{
if (plane.control_mode == &plane.mode_manual) {
// no PIDs should be used in manual
return;
}
const Parameters &g = plane.g;
const AP_PIDInfo *pid_info;
if (g.gcs_pid_mask & TUNING_BITS_ROLL) {
pid_info = &plane.rollController.get_pid_info();
#if HAL_QUADPLANE_ENABLED
if (plane.quadplane.in_vtol_mode()) {
pid_info = &plane.quadplane.attitude_control->get_rate_roll_pid().get_pid_info();
}
#endif
send_pid_info(pid_info, PID_TUNING_ROLL, pid_info->actual);
}
if (g.gcs_pid_mask & TUNING_BITS_PITCH) {
pid_info = &plane.pitchController.get_pid_info();
#if HAL_QUADPLANE_ENABLED
if (plane.quadplane.in_vtol_mode()) {
pid_info = &plane.quadplane.attitude_control->get_rate_pitch_pid().get_pid_info();
}
#endif
send_pid_info(pid_info, PID_TUNING_PITCH, pid_info->actual);
}
if (g.gcs_pid_mask & TUNING_BITS_YAW) {
pid_info = &plane.yawController.get_pid_info();
#if HAL_QUADPLANE_ENABLED
if (plane.quadplane.in_vtol_mode()) {
pid_info = &plane.quadplane.attitude_control->get_rate_yaw_pid().get_pid_info();
}
#endif
send_pid_info(pid_info, PID_TUNING_YAW, pid_info->actual);
}
if (g.gcs_pid_mask & TUNING_BITS_STEER) {
pid_info = &plane.steerController.get_pid_info();
send_pid_info(pid_info, PID_TUNING_STEER, pid_info->actual);
}
if ((g.gcs_pid_mask & TUNING_BITS_LAND) && (plane.flight_stage == AP_FixedWing::FlightStage::LAND)) {
AP_AHRS &ahrs = AP::ahrs();
const Vector3f &gyro = ahrs.get_gyro();
send_pid_info(plane.landing.get_pid_info(), PID_TUNING_LANDING, degrees(gyro.z));
}
#if HAL_QUADPLANE_ENABLED
if (g.gcs_pid_mask & TUNING_BITS_ACCZ && plane.quadplane.in_vtol_mode()) {
pid_info = &plane.quadplane.pos_control->get_accel_z_pid().get_pid_info();
send_pid_info(pid_info, PID_TUNING_ACCZ, pid_info->actual);
}
#endif
}
uint8_t GCS_MAVLINK_Plane::sysid_my_gcs() const
{
return plane.g.sysid_my_gcs;
}
bool GCS_MAVLINK_Plane::sysid_enforce() const
{
return plane.g2.sysid_enforce;
}
uint32_t GCS_MAVLINK_Plane::telem_delay() const
{
return (uint32_t)(plane.g.telem_delay);
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK_Plane::try_send_message(enum ap_message id)
{
switch (id) {
case MSG_SERVO_OUT:
// unused
break;
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
plane.terrain.send_request(chan);
#endif
break;
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
send_wind();
break;
case MSG_ADSB_VEHICLE:
#if HAL_ADSB_ENABLED
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
plane.adsb.send_adsb_vehicle(chan);
#endif
break;
case MSG_AOA_SSA:
CHECK_PAYLOAD_SIZE(AOA_SSA);
send_aoa_ssa();
break;
case MSG_LANDING:
plane.landing.send_landing_message(chan);
break;
case MSG_HYGROMETER:
#if AP_AIRSPEED_HYGROMETER_ENABLE
CHECK_PAYLOAD_SIZE(HYGROMETER_SENSOR);
send_hygrometer();
#endif
break;
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
#if AP_AIRSPEED_HYGROMETER_ENABLE
void GCS_MAVLINK_Plane::send_hygrometer()
{
if (!HAVE_PAYLOAD_SPACE(chan, HYGROMETER_SENSOR)) {
return;
}
const auto *airspeed = AP::airspeed();
if (airspeed == nullptr) {
return;
}
const uint32_t now = AP_HAL::millis();
for (uint8_t i=0; i<AIRSPEED_MAX_SENSORS; i++) {
uint8_t idx = (i+last_hygrometer_send_idx+1) % AIRSPEED_MAX_SENSORS;
float temperature, humidity;
uint32_t last_sample_ms;
if (!airspeed->get_hygrometer(idx, last_sample_ms, temperature, humidity)) {
continue;
}
if (now - last_sample_ms > 2000) {
// not updating, stop sending
continue;
}
if (!HAVE_PAYLOAD_SPACE(chan, HYGROMETER_SENSOR)) {
return;
}
mavlink_msg_hygrometer_sensor_send(
chan,
idx,
int16_t(temperature*100),
uint16_t(humidity*100));
last_hygrometer_send_idx = idx;
}
}
#endif // AP_AIRSPEED_HYGROMETER_ENABLE
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: MAVLink Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, and SCALED_PRESSURE3
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate
// @Description: MAVLink Stream rate of SYS_STATUS, POWER_STATUS, MCU_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW_INT (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, FENCE_STATUS, and GLOBAL_TARGET_POS_INT
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate
// @Description: MAVLink Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate
// @Description: MAVLink Raw Control stream rate of SERVO_OUT
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate
// @Description: MAVLink Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate
// @Description: MAVLink Stream rate of ATTITUDE, SIMSTATE (SIM only), AHRS2, RPM, AOA_SSA, LANDING,ESC_TELEMETRY,EFI_STATUS, and PID_TUNING
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate
// @Description: MAVLink Stream rate of VFR_HUD
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate
// @Description: MAVLink Stream rate of AHRS, SYSTEM_TIME, WIND, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, BATTERY2, GIMBAL_DEVICE_ATTITUDE_STATUS, OPTICAL_FLOW, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION, and BATTERY_STATUS
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate
// @Description: MAVLink Stream rate of PARAM_VALUE
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 10),
// @Param: ADSB
// @DisplayName: ADSB stream rate
// @Description: MAVLink ADSB stream rate
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("ADSB", 9, GCS_MAVLINK_Parameters, streamRates[9], 5),
AP_GROUPEND
};
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
MSG_RAW_IMU,
MSG_SCALED_IMU2,
MSG_SCALED_IMU3,
MSG_SCALED_PRESSURE,
MSG_SCALED_PRESSURE2,
MSG_SCALED_PRESSURE3,
};
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
MSG_SYS_STATUS,
MSG_POWER_STATUS,
#if HAL_WITH_MCU_MONITORING
MSG_MCU_STATUS,
#endif
MSG_MEMINFO,
MSG_CURRENT_WAYPOINT,
MSG_GPS_RAW,
MSG_GPS_RTK,
#if GPS_MAX_RECEIVERS > 1
MSG_GPS2_RAW,
MSG_GPS2_RTK,
#endif
MSG_NAV_CONTROLLER_OUTPUT,
#if AP_FENCE_ENABLED
MSG_FENCE_STATUS,
#endif
MSG_POSITION_TARGET_GLOBAL_INT,
};
static const ap_message STREAM_POSITION_msgs[] = {
MSG_LOCATION,
MSG_LOCAL_POSITION
};
static const ap_message STREAM_RAW_CONTROLLER_msgs[] = {
MSG_SERVO_OUT,
};
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
MSG_SERVO_OUTPUT_RAW,
MSG_RC_CHANNELS,
MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection
};
static const ap_message STREAM_EXTRA1_msgs[] = {
MSG_ATTITUDE,
#if AP_SIM_ENABLED
MSG_SIMSTATE,
#endif
MSG_AHRS2,
#if AP_RPM_ENABLED
MSG_RPM,
#endif
MSG_AOA_SSA,
MSG_PID_TUNING,
MSG_LANDING,
#if HAL_WITH_ESC_TELEM
MSG_ESC_TELEMETRY,
#endif
#if HAL_EFI_ENABLED
MSG_EFI_STATUS,
#endif
#if AP_AIRSPEED_HYGROMETER_ENABLE
MSG_HYGROMETER,
#endif
};
static const ap_message STREAM_EXTRA2_msgs[] = {
MSG_VFR_HUD
};
static const ap_message STREAM_EXTRA3_msgs[] = {
MSG_AHRS,
MSG_WIND,
MSG_RANGEFINDER,
MSG_DISTANCE_SENSOR,
MSG_SYSTEM_TIME,
#if AP_TERRAIN_AVAILABLE
MSG_TERRAIN,
#endif
#if AP_BATTERY_ENABLED
MSG_BATTERY_STATUS,
#endif
#if HAL_MOUNT_ENABLED
MSG_GIMBAL_DEVICE_ATTITUDE_STATUS,
#endif
#if AP_OPTICALFLOW_ENABLED
MSG_OPTICAL_FLOW,
#endif
#if COMPASS_CAL_ENABLED
MSG_MAG_CAL_REPORT,
MSG_MAG_CAL_PROGRESS,
#endif
MSG_EKF_STATUS_REPORT,
MSG_VIBRATION,
};
static const ap_message STREAM_PARAMS_msgs[] = {
MSG_NEXT_PARAM
};
static const ap_message STREAM_ADSB_msgs[] = {
MSG_ADSB_VEHICLE,
#if AP_AIS_ENABLED
MSG_AIS_VESSEL,
#endif
};
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
MAV_STREAM_ENTRY(STREAM_POSITION),
MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER),
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
MAV_STREAM_ENTRY(STREAM_EXTRA1),
MAV_STREAM_ENTRY(STREAM_EXTRA2),
MAV_STREAM_ENTRY(STREAM_EXTRA3),
MAV_STREAM_ENTRY(STREAM_PARAMS),
MAV_STREAM_ENTRY(STREAM_ADSB),
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
};
/*
handle a request to switch to guided mode. This happens via a
callback from handle_mission_item()
*/
bool GCS_MAVLINK_Plane::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
return plane.control_mode->handle_guided_request(cmd.content.location);
}
/*
handle a request to change current WP altitude. This happens via a
callback from handle_mission_item()
*/
void GCS_MAVLINK_Plane::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
plane.next_WP_loc.alt = cmd.content.location.alt;
if (cmd.content.location.relative_alt) {
plane.next_WP_loc.alt += plane.home.alt;
}
plane.next_WP_loc.relative_alt = false;
plane.next_WP_loc.terrain_alt = cmd.content.location.terrain_alt;
plane.reset_offset_altitude();
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
plane.in_calibration = true;
MAV_RESULT ret = GCS_MAVLINK::handle_command_preflight_calibration(packet, msg);
plane.in_calibration = false;
return ret;
}
void GCS_MAVLINK_Plane::packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg)
{
#if HAL_ADSB_ENABLED
plane.avoidance_adsb.handle_msg(msg);
#endif
#if AP_SCRIPTING_ENABLED && AP_FOLLOW_ENABLED
// pass message to follow library
plane.g2.follow.handle_msg(msg);
#endif
GCS_MAVLINK::packetReceived(status, msg);
}
bool GCS_MAVLINK_Plane::set_home_to_current_location(bool _lock)
{
if (!plane.set_home_persistently(AP::gps().location())) {
return false;
}
if (_lock) {
AP::ahrs().lock_home();
}
if ((plane.control_mode == &plane.mode_rtl)
#if HAL_QUADPLANE_ENABLED
|| (plane.control_mode == &plane.mode_qrtl)
#endif
) {
// if in RTL head to the updated home location
plane.control_mode->enter();
}
return true;
}
bool GCS_MAVLINK_Plane::set_home(const Location& loc, bool _lock)
{
if (!AP::ahrs().set_home(loc)) {
return false;
}
if (_lock) {
AP::ahrs().lock_home();
}
if ((plane.control_mode == &plane.mode_rtl)
#if HAL_QUADPLANE_ENABLED
|| (plane.control_mode == &plane.mode_qrtl)
#endif
) {
// if in RTL head to the updated home location
plane.control_mode->enter();
}
return true;
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_do_reposition(const mavlink_command_int_t &packet)
{
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
return MAV_RESULT_DENIED;
}
Location requested_position;
if (!location_from_command_t(packet, requested_position)) {
return MAV_RESULT_DENIED;
}
if (isnan(packet.param4) || is_zero(packet.param4)) {
requested_position.loiter_ccw = 0;
} else {
requested_position.loiter_ccw = 1;
}
if (requested_position.sanitize(plane.current_loc)) {
// if the location wasn't already sane don't load it
return MAV_RESULT_DENIED;
}
// location is valid load and set
if (((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) ||
(plane.control_mode == &plane.mode_guided)) {
plane.set_mode(plane.mode_guided, ModeReason::GCS_COMMAND);
// add home alt if needed
if (requested_position.relative_alt) {
requested_position.alt += plane.home.alt;
requested_position.relative_alt = 0;
}
plane.set_guided_WP(requested_position);
// Loiter radius for planes. Positive radius in meters, direction is controlled by Yaw (param4) value, parsed above
if (!isnan(packet.param3) && packet.param3 > 0) {
plane.mode_guided.set_radius_and_direction(packet.param3, requested_position.loiter_ccw);
}
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
// these are GUIDED mode commands that are RATE or slew enabled, so you can have more powerful control than default controls.
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_guided_slew_commands(const mavlink_command_int_t &packet)
{
switch(packet.command) {
#if OFFBOARD_GUIDED == ENABLED
case MAV_CMD_GUIDED_CHANGE_SPEED: {
// command is only valid in guided mode
if (plane.control_mode != &plane.mode_guided) {
return MAV_RESULT_FAILED;
}
// only airspeed commands are supported right now...
if (int(packet.param1) != SPEED_TYPE_AIRSPEED) { // since SPEED_TYPE is int in range 0-1 and packet.param1 is a *float* this works.
return MAV_RESULT_DENIED;
}
// reject airspeeds that are outside of the tuning envelope
if (packet.param2 > plane.aparm.airspeed_max || packet.param2 < plane.aparm.airspeed_min) {
return MAV_RESULT_DENIED;
}
// no need to process any new packet/s with the
// same airspeed any further, if we are already doing it.
float new_target_airspeed_cm = packet.param2 * 100;
if ( is_equal(new_target_airspeed_cm,plane.guided_state.target_airspeed_cm)) {
return MAV_RESULT_ACCEPTED;
}
plane.guided_state.target_airspeed_cm = new_target_airspeed_cm;
plane.guided_state.target_airspeed_time_ms = AP_HAL::millis();
if (is_zero(packet.param3)) {
// the user wanted /maximum acceleration, pick a large value as close enough
plane.guided_state.target_airspeed_accel = 1000.0f;
} else {
plane.guided_state.target_airspeed_accel = fabsf(packet.param3);
}
// assign an acceleration direction
if (plane.guided_state.target_airspeed_cm < plane.target_airspeed_cm) {
plane.guided_state.target_airspeed_accel *= -1.0f;
}
return MAV_RESULT_ACCEPTED;
}
case MAV_CMD_GUIDED_CHANGE_ALTITUDE: {
// command is only valid in guided
if (plane.control_mode != &plane.mode_guided) {
return MAV_RESULT_FAILED;
}
// disallow default value of -1 and dangerous value of zero
if (is_equal(packet.z, -1.0f) || is_equal(packet.z, 0.0f)){
return MAV_RESULT_DENIED;
}
// the requested alt data might be relative or absolute
float new_target_alt = packet.z * 100;
float new_target_alt_rel = packet.z * 100 + plane.home.alt;
// only global/relative/terrain frames are supported
switch(packet.frame) {
case MAV_FRAME_GLOBAL_RELATIVE_ALT: {
if (is_equal(plane.guided_state.target_alt,new_target_alt_rel) ) { // compare two floats as near-enough
// no need to process any new packet/s with the same ALT any further, if we are already doing it.
return MAV_RESULT_ACCEPTED;
}
plane.guided_state.target_alt = new_target_alt_rel;
break;
}
case MAV_FRAME_GLOBAL: {
if (is_equal(plane.guided_state.target_alt,new_target_alt) ) { // compare two floats as near-enough
// no need to process any new packet/s with the same ALT any further, if we are already doing it.
return MAV_RESULT_ACCEPTED;
}
plane.guided_state.target_alt = new_target_alt;
break;
}
default:
// MAV_RESULT_DENIED means Command is invalid (is supported but has invalid parameters).
return MAV_RESULT_DENIED;
}
plane.guided_state.target_alt_frame = packet.frame;
plane.guided_state.last_target_alt = plane.current_loc.alt; // FIXME: Reference frame is not corrected for here
plane.guided_state.target_alt_time_ms = AP_HAL::millis();
if (is_zero(packet.param3)) {
// the user wanted /maximum acceleration, pick a large value as close enough
plane.guided_state.target_alt_accel = 1000.0;
} else {
plane.guided_state.target_alt_accel = fabsf(packet.param3);
}
// assign an acceleration direction
if (plane.guided_state.target_alt < plane.current_loc.alt) {
plane.guided_state.target_alt_accel *= -1.0f;
}
return MAV_RESULT_ACCEPTED;
}
case MAV_CMD_GUIDED_CHANGE_HEADING: {
// command is only valid in guided mode
if (plane.control_mode != &plane.mode_guided) {
return MAV_RESULT_FAILED;
}
// don't accept packets outside of [0-360] degree range
if (packet.param2 < 0.0f || packet.param2 >= 360.0f) {
return MAV_RESULT_DENIED;
}
float new_target_heading = radians(wrap_180(packet.param2));
// course over ground
if ( int(packet.param1) == HEADING_TYPE_COURSE_OVER_GROUND) { // compare as nearest int
plane.guided_state.target_heading_type = GUIDED_HEADING_COG;
plane.prev_WP_loc = plane.current_loc;
// normal vehicle heading
} else if (int(packet.param1) == HEADING_TYPE_HEADING) { // compare as nearest int
plane.guided_state.target_heading_type = GUIDED_HEADING_HEADING;
} else {
// MAV_RESULT_DENIED means Command is invalid (is supported but has invalid parameters).
return MAV_RESULT_DENIED;
}
plane.g2.guidedHeading.reset_I();
plane.guided_state.target_heading = new_target_heading;
plane.guided_state.target_heading_accel_limit = MAX(packet.param3, 0.05f);
plane.guided_state.target_heading_time_ms = AP_HAL::millis();
return MAV_RESULT_ACCEPTED;
}
#endif // OFFBOARD_GUIDED == ENABLED
}
// anything else ...
return MAV_RESULT_UNSUPPORTED;
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
switch(packet.command) {
case MAV_CMD_DO_AUTOTUNE_ENABLE:
return handle_MAV_CMD_DO_AUTOTUNE_ENABLE(packet);
case MAV_CMD_DO_REPOSITION:
return handle_command_int_do_reposition(packet);
// special 'slew-enabled' guided commands here... for speed,alt, and direction commands
case MAV_CMD_GUIDED_CHANGE_SPEED:
case MAV_CMD_GUIDED_CHANGE_ALTITUDE:
case MAV_CMD_GUIDED_CHANGE_HEADING:
return handle_command_int_guided_slew_commands(packet);
#if AP_SCRIPTING_ENABLED && AP_FOLLOW_ENABLED
case MAV_CMD_DO_FOLLOW:
// param1: sysid of target to follow
if ((packet.param1 > 0) && (packet.param1 <= 255)) {
plane.g2.follow.set_target_sysid((uint8_t)packet.param1);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_DENIED;
#endif
#if AP_ICENGINE_ENABLED
case MAV_CMD_DO_ENGINE_CONTROL:
if (!plane.g2.ice_control.engine_control(packet.param1, packet.param2, packet.param3, (uint32_t)packet.param4)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
#endif
case MAV_CMD_DO_CHANGE_SPEED:
return handle_command_DO_CHANGE_SPEED(packet);
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
return handle_MAV_CMD_DO_PARACHUTE(packet);
#endif
#if HAL_QUADPLANE_ENABLED
case MAV_CMD_DO_MOTOR_TEST:
return handle_MAV_CMD_DO_MOTOR_TEST(packet);
case MAV_CMD_DO_VTOL_TRANSITION:
return handle_command_DO_VTOL_TRANSITION(packet);
case MAV_CMD_NAV_TAKEOFF:
return handle_command_MAV_CMD_NAV_TAKEOFF(packet);
#endif
case MAV_CMD_DO_GO_AROUND:
return plane.trigger_land_abort(packet.param1) ? MAV_RESULT_ACCEPTED : MAV_RESULT_FAILED;
case MAV_CMD_DO_LAND_START:
// attempt to switch to next DO_LAND_START command in the mission
if (plane.mission.jump_to_landing_sequence()) {
plane.set_mode(plane.mode_auto, ModeReason::GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
case MAV_CMD_MISSION_START:
plane.set_mode(plane.mode_auto, ModeReason::GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_LOITER_UNLIM:
plane.set_mode(plane.mode_loiter, ModeReason::GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
plane.set_mode(plane.mode_rtl, ModeReason::GCS_COMMAND);
return MAV_RESULT_ACCEPTED;
default:
return GCS_MAVLINK::handle_command_int_packet(packet, msg);
}
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_DO_CHANGE_SPEED(const mavlink_command_int_t &packet)
{
// if we're in failsafe modes (e.g., RTL, LOITER) or in pilot
// controlled modes (e.g., MANUAL, TRAINING)
// this command should be ignored since it comes in from GCS
// or a companion computer:
if ((!plane.control_mode->is_guided_mode()) &&
(plane.control_mode != &plane.mode_auto)) {
// failed
return MAV_RESULT_FAILED;
}
if (plane.do_change_speed(packet.param1, packet.param2, packet.param3)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
#if HAL_QUADPLANE_ENABLED
#if AP_MAVLINK_COMMAND_LONG_ENABLED
void GCS_MAVLINK_Plane::convert_MAV_CMD_NAV_TAKEOFF_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out)
{
// convert to MAV_FRAME_LOCAL_OFFSET_NED, "NED local tangent frame
// with origin that travels with the vehicle"
out = {};
out.target_system = in.target_system;
out.target_component = in.target_component;
out.frame = MAV_FRAME_LOCAL_OFFSET_NED;
out.command = in.command;
// out.current = 0;
// out.autocontinue = 0;
// out.param1 = in.param1; // we only use the "z" parameter in this command:
// out.param2 = in.param2;
// out.param3 = in.param3;
// out.param4 = in.param4;
// out.x = 0; // we don't handle positioning when doing takeoffs
// out.y = 0;
out.z = -in.param7; // up -> down
}
void GCS_MAVLINK_Plane::convert_COMMAND_LONG_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out, MAV_FRAME frame)
{
switch (in.command) {
case MAV_CMD_NAV_TAKEOFF:
convert_MAV_CMD_NAV_TAKEOFF_to_COMMAND_INT(in, out);
return;
}
return GCS_MAVLINK::convert_COMMAND_LONG_to_COMMAND_INT(in, out, frame);
}
#endif // AP_MAVLINK_COMMAND_LONG_ENABLED
MAV_RESULT GCS_MAVLINK_Plane::handle_command_MAV_CMD_NAV_TAKEOFF(const mavlink_command_int_t &packet)
{
float takeoff_alt = packet.z;
switch (packet.frame) {
case MAV_FRAME_LOCAL_OFFSET_NED: // "NED local tangent frame with origin that travels with the vehicle"
takeoff_alt = -takeoff_alt; // down -> up
break;
default:
return MAV_RESULT_DENIED; // "is supported but has invalid parameters"
}
if (!plane.quadplane.available()) {
return MAV_RESULT_FAILED;
}
if (!plane.quadplane.do_user_takeoff(takeoff_alt)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#endif
MAV_RESULT GCS_MAVLINK_Plane::handle_MAV_CMD_DO_AUTOTUNE_ENABLE(const mavlink_command_int_t &packet)
{
// param1 : enable/disable
plane.autotune_enable(!is_zero(packet.param1));
return MAV_RESULT_ACCEPTED;
}
#if PARACHUTE == ENABLED
MAV_RESULT GCS_MAVLINK_Plane::handle_MAV_CMD_DO_PARACHUTE(const mavlink_command_int_t &packet)
{
// configure or release parachute
switch ((uint16_t)packet.param1) {
case PARACHUTE_DISABLE:
plane.parachute.enabled(false);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_ENABLE:
plane.parachute.enabled(true);
return MAV_RESULT_ACCEPTED;
case PARACHUTE_RELEASE:
// treat as a manual release which performs some additional check of altitude
if (plane.parachute.released()) {
gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute already released");
return MAV_RESULT_FAILED;
}
if (!plane.parachute.enabled()) {
gcs().send_text(MAV_SEVERITY_NOTICE, "Parachute not enabled");
return MAV_RESULT_FAILED;
}
if (!plane.parachute_manual_release()) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
default:
break;
}
return MAV_RESULT_FAILED;
}
#endif
#if HAL_QUADPLANE_ENABLED
MAV_RESULT GCS_MAVLINK_Plane::handle_MAV_CMD_DO_MOTOR_TEST(const mavlink_command_int_t &packet)
{
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
// param5 : motor count (number of motors to test in sequence)
return plane.quadplane.mavlink_motor_test_start(chan,
(uint8_t)packet.param1,
(uint8_t)packet.param2,
(uint16_t)packet.param3,
packet.param4,
(uint8_t)packet.x);
}
MAV_RESULT GCS_MAVLINK_Plane::handle_command_DO_VTOL_TRANSITION(const mavlink_command_int_t &packet)
{
if (!plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)packet.param1)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#endif
// this is called on receipt of a MANUAL_CONTROL packet and is
// expected to call manual_override to override RC input on desired
// axes.
void GCS_MAVLINK_Plane::handle_manual_control_axes(const mavlink_manual_control_t &packet, const uint32_t tnow)
{
manual_override(plane.channel_roll, packet.y, 1000, 2000, tnow);
manual_override(plane.channel_pitch, packet.x, 1000, 2000, tnow, true);
manual_override(plane.channel_throttle, packet.z, 0, 1000, tnow);
manual_override(plane.channel_rudder, packet.r, 1000, 2000, tnow);
}
void GCS_MAVLINK_Plane::handle_message(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS:
{
#if HAL_LOGGING_ENABLED
handle_radio_status(msg, plane.should_log(MASK_LOG_PM));
#else
handle_radio_status(msg, false);
#endif
break;
}
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE
plane.terrain.handle_data(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET:
{
// Only allow companion computer (or other external controller) to
// control attitude in GUIDED mode. We DON'T want external control
// in e.g., RTL, CICLE. Specifying a single mode for companion
// computer control is more safe (even more so when using
// FENCE_ACTION = 4 for geofence failures).
if (plane.control_mode != &plane.mode_guided) { // don't screw up failsafes
break;
}
mavlink_set_attitude_target_t att_target;
mavlink_msg_set_attitude_target_decode(&msg, &att_target);
// Mappings: If any of these bits are set, the corresponding input should be ignored.
// NOTE, when parsing the bits we invert them for easier interpretation but transport has them inverted
// bit 1: body roll rate
// bit 2: body pitch rate
// bit 3: body yaw rate
// bit 4: unknown
// bit 5: unknown
// bit 6: reserved
// bit 7: throttle
// bit 8: attitude
// if not setting all Quaternion values, use _rate flags to indicate which fields.
// Extract the Euler roll angle from the Quaternion.
Quaternion q(att_target.q[0], att_target.q[1],
att_target.q[2], att_target.q[3]);
// NOTE: att_target.type_mask is inverted for easier interpretation
att_target.type_mask = att_target.type_mask ^ 0xFF;
uint8_t attitude_mask = att_target.type_mask & 0b10000111; // q plus rpy
uint32_t now = AP_HAL::millis();
if ((attitude_mask & 0b10000001) || // partial, including roll
(attitude_mask == 0b10000000)) { // all angles
plane.guided_state.forced_rpy_cd.x = degrees(q.get_euler_roll()) * 100.0f;
// Update timer for external roll to the nav control
plane.guided_state.last_forced_rpy_ms.x = now;
}
if ((attitude_mask & 0b10000010) || // partial, including pitch
(attitude_mask == 0b10000000)) { // all angles
plane.guided_state.forced_rpy_cd.y = degrees(q.get_euler_pitch()) * 100.0f;
// Update timer for external pitch to the nav control
plane.guided_state.last_forced_rpy_ms.y = now;
}
if ((attitude_mask & 0b10000100) || // partial, including yaw
(attitude_mask == 0b10000000)) { // all angles
plane.guided_state.forced_rpy_cd.z = degrees(q.get_euler_yaw()) * 100.0f;
// Update timer for external yaw to the nav control
plane.guided_state.last_forced_rpy_ms.z = now;
}
if (att_target.type_mask & 0b01000000) { // throttle
plane.guided_state.forced_throttle = att_target.thrust * 100.0f;
// Update timer for external throttle
plane.guided_state.last_forced_throttle_ms = now;
}
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED:
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(&msg, &packet);
// exit if vehicle is not in Guided mode
if (plane.control_mode != &plane.mode_guided) {
break;
}
// only local moves for now
if (packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED) {
break;
}
// just do altitude for now
plane.next_WP_loc.alt += -packet.z*100.0;
gcs().send_text(MAV_SEVERITY_INFO, "Change alt to %.1f",
(double)((plane.next_WP_loc.alt - plane.home.alt)*0.01));
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT:
{
// Only want to allow companion computer position control when
// in a certain mode to avoid inadvertently sending these
// kinds of commands when the autopilot is responding to problems
// in modes such as RTL, CIRCLE, etc. Specifying ONLY one mode
// for companion computer control is more safe (provided
// one uses the FENCE_ACTION = 4 (RTL) for geofence failures).
if (plane.control_mode != &plane.mode_guided) {
//don't screw up failsafes
break;
}
mavlink_set_position_target_global_int_t pos_target;
mavlink_msg_set_position_target_global_int_decode(&msg, &pos_target);
// Unexpectedly, the mask is expecting "ones" for dimensions that should
// be IGNORNED rather than INCLUDED. See mavlink documentation of the
// SET_POSITION_TARGET_GLOBAL_INT message, type_mask field.
const uint16_t alt_mask = 0b1111111111111011; // (z mask at bit 3)
bool msg_valid = true;
AP_Mission::Mission_Command cmd = {0};
if (pos_target.type_mask & alt_mask)
{
cmd.content.location.alt = pos_target.alt * 100;
cmd.content.location.relative_alt = false;
cmd.content.location.terrain_alt = false;
switch (pos_target.coordinate_frame)
{
case MAV_FRAME_GLOBAL:
case MAV_FRAME_GLOBAL_INT:
break; //default to MSL altitude
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
cmd.content.location.relative_alt = true;
break;
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
cmd.content.location.relative_alt = true;
cmd.content.location.terrain_alt = true;
break;
default:
gcs().send_text(MAV_SEVERITY_WARNING, "Invalid coord frame in SET_POSTION_TARGET_GLOBAL_INT");
msg_valid = false;
break;
}
if (msg_valid) {
handle_change_alt_request(cmd);
}
} // end if alt_mask
break;
}
default:
GCS_MAVLINK::handle_message(msg);
break;
} // end switch
} // end handle mavlink
MAV_RESULT GCS_MAVLINK_Plane::handle_command_do_set_mission_current(const mavlink_command_int_t &packet)
{
const MAV_RESULT result = GCS_MAVLINK::handle_command_do_set_mission_current(packet);
if (result != MAV_RESULT_ACCEPTED) {
return result;
}
// if you change this you must change handle_mission_set_current
plane.auto_state.next_wp_crosstrack = false;
if (plane.control_mode == &plane.mode_auto && plane.mission.state() == AP_Mission::MISSION_STOPPED) {
plane.mission.resume();
}
return result;
}
#if AP_MAVLINK_MISSION_SET_CURRENT_ENABLED
void GCS_MAVLINK_Plane::handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg)
{
// if you change this you must change handle_command_do_set_mission_current
plane.auto_state.next_wp_crosstrack = false;
GCS_MAVLINK::handle_mission_set_current(mission, msg);
if (plane.control_mode == &plane.mode_auto && plane.mission.state() == AP_Mission::MISSION_STOPPED) {
plane.mission.resume();
}
}
#endif
uint64_t GCS_MAVLINK_Plane::capabilities() const
{
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
MAV_PROTOCOL_CAPABILITY_COMMAND_INT |
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
#if AP_TERRAIN_AVAILABLE
(plane.terrain.enabled() ? MAV_PROTOCOL_CAPABILITY_TERRAIN : 0) |
#endif
GCS_MAVLINK::capabilities());
}
#if HAL_HIGH_LATENCY2_ENABLED
int16_t GCS_MAVLINK_Plane::high_latency_target_altitude() const
{
AP_AHRS &ahrs = AP::ahrs();
Location global_position_current;
UNUSED_RESULT(ahrs.get_location(global_position_current));
#if HAL_QUADPLANE_ENABLED
const QuadPlane &quadplane = plane.quadplane;
//return units are m
if (quadplane.show_vtol_view()) {
return (plane.control_mode != &plane.mode_qstabilize) ? 0.01 * (global_position_current.alt + quadplane.pos_control->get_pos_error_z_cm()) : 0;
}
#endif
return 0.01 * (global_position_current.alt + plane.altitude_error_cm);
}
uint8_t GCS_MAVLINK_Plane::high_latency_tgt_heading() const
{
// return units are deg/2
#if HAL_QUADPLANE_ENABLED
const QuadPlane &quadplane = plane.quadplane;
if (quadplane.show_vtol_view()) {
const Vector3f &targets = quadplane.attitude_control->get_att_target_euler_cd();
return ((uint16_t)(targets.z * 0.01)) / 2;
}
#endif
const AP_Navigation *nav_controller = plane.nav_controller;
// need to convert -18000->18000 to 0->360/2
return wrap_360_cd(nav_controller->target_bearing_cd() ) / 200;
}
// return units are dm
uint16_t GCS_MAVLINK_Plane::high_latency_tgt_dist() const
{
#if HAL_QUADPLANE_ENABLED
const QuadPlane &quadplane = plane.quadplane;
if (quadplane.show_vtol_view()) {
bool wp_nav_valid = quadplane.using_wp_nav();
return (wp_nav_valid ? MIN(quadplane.wp_nav->get_wp_distance_to_destination(), UINT16_MAX) : 0) / 10;
}
#endif
return MIN(plane.auto_state.wp_distance, UINT16_MAX) / 10;
}
uint8_t GCS_MAVLINK_Plane::high_latency_tgt_airspeed() const
{
// return units are m/s*5
return plane.target_airspeed_cm * 0.05;
}
uint8_t GCS_MAVLINK_Plane::high_latency_wind_speed() const
{
Vector3f wind;
wind = AP::ahrs().wind_estimate();
// return units are m/s*5
return MIN(wind.length() * 5, UINT8_MAX);
}
uint8_t GCS_MAVLINK_Plane::high_latency_wind_direction() const
{
const Vector3f wind = AP::ahrs().wind_estimate();
// return units are deg/2
// need to convert -180->180 to 0->360/2
return wrap_360(degrees(atan2f(-wind.y, -wind.x))) / 2;
}
#endif // HAL_HIGH_LATENCY2_ENABLED
MAV_VTOL_STATE GCS_MAVLINK_Plane::vtol_state() const
{
#if !HAL_QUADPLANE_ENABLED
return MAV_VTOL_STATE_UNDEFINED;
#else
if (!plane.quadplane.available()) {
return MAV_VTOL_STATE_UNDEFINED;
}
return plane.quadplane.transition->get_mav_vtol_state();
#endif
};
MAV_LANDED_STATE GCS_MAVLINK_Plane::landed_state() const
{
if (plane.is_flying()) {
// note that Q-modes almost always consider themselves as flying
return MAV_LANDED_STATE_IN_AIR;
}
return MAV_LANDED_STATE_ON_GROUND;
}