ardupilot/ArduCopter/system.pde
Pat Hickey 8300e21a8c hil-sensors ArduCopter: fixes to make hil-sensors build work properly
* requires new stub libraries for InertialSensor and PeriodicProcess.
2011-11-25 20:00:18 -08:00

595 lines
14 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// Functions called from the top-level menu
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
static int8_t planner_mode(uint8_t argc, const Menu::arg *argv); // in planner.pde
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Commands:\n"
" logs\n"
" setup\n"
" test\n"
" planner\n"
"\n"
"Move the slide switch and reset to FLY.\n"
"\n"));
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"logs", process_logs},
{"setup", setup_mode},
{"test", test_mode},
{"help", main_menu_help},
{"planner", planner_mode}
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
// the user wants the CLI. It never exits
static void run_cli(void)
{
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void init_ardupilot()
{
// Console serial port
//
// The console port buffers are defined to be sufficiently large to support
// the console's use as a logging device, optionally as the GPS port when
// GPS_PROTOCOL_IMU is selected, and as the telemetry port.
//
// XXX This could be optimised to reduce the buffer sizes in the cases
// where they are not otherwise required.
//
Serial.begin(SERIAL0_BAUD, 128, 128);
// GPS serial port.
//
// Not used if the IMU/X-Plane GPS is in use.
//
// XXX currently the EM406 (SiRF receiver) is nominally configured
// at 57600, however it's not been supported to date. We should
// probably standardise on 38400.
//
// XXX the 128 byte receive buffer may be too small for NMEA, depending
// on the message set configured.
//
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU
Serial1.begin(38400, 128, 16);
#endif
Serial.printf_P(PSTR("\n\nInit " THISFIRMWARE
"\n\nFree RAM: %u\n"),
memcheck_available_memory());
//
// Initialize the isr_registry.
//
isr_registry.init();
//
// Check the EEPROM format version before loading any parameters from EEPROM.
//
report_version();
// setup IO pins
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
digitalWrite(A_LED_PIN, LED_OFF);
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
digitalWrite(B_LED_PIN, LED_OFF);
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
digitalWrite(C_LED_PIN, LED_OFF);
#if SLIDE_SWITCH_PIN > 0
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode
#endif
#if CONFIG_PUSHBUTTON == ENABLED
pinMode(PUSHBUTTON_PIN, INPUT); // unused
#endif
#if CONFIG_RELAY == ENABLED
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay
#endif
// XXX set Analog out 14 to output
// 76543210
//DDRK |= B01010000;
#if MOTOR_LEDS == 1
pinMode(FR_LED, OUTPUT); // GPS status LED
pinMode(RE_LED, OUTPUT); // GPS status LED
pinMode(RI_LED, OUTPUT); // GPS status LED
pinMode(LE_LED, OUTPUT); // GPS status LED
#endif
#if PIEZO == 1
pinMode(PIEZO_PIN,OUTPUT);
piezo_beep();
#endif
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
//Serial.printf_P(PSTR("\n\nForcing complete parameter reset..."));
/*Serial.printf_P(PSTR("\n\nEEPROM format version %d not compatible with this firmware (requires %d)"
"\n\nForcing complete parameter reset..."),
g.format_version.get(),
Parameters::k_format_version);
*/
// erase all parameters
Serial.printf_P(PSTR("Firmware change: erasing EEPROM...\n"));
delay(100); // wait for serial send
AP_Var::erase_all();
// save the new format version
g.format_version.set_and_save(Parameters::k_format_version);
// save default radio values
default_dead_zones();
Serial.printf_P(PSTR("Please Run Setup...\n"));
while (true) {
delay(1000);
if(motor_light){
digitalWrite(A_LED_PIN, LED_ON);
digitalWrite(B_LED_PIN, LED_ON);
digitalWrite(C_LED_PIN, LED_ON);
}else{
digitalWrite(A_LED_PIN, LED_OFF);
digitalWrite(B_LED_PIN, LED_OFF);
digitalWrite(C_LED_PIN, LED_OFF);
}
motor_light = !motor_light;
}
}else{
// save default radio values
//default_dead_zones();
// Load all auto-loaded EEPROM variables
AP_Var::load_all();
}
// Telemetry port.
//
// Not used if telemetry is going to the console.
//
// XXX for unidirectional protocols, we could (should) minimize
// the receive buffer, and the transmit buffer could also be
// shrunk for protocols that don't send large messages.
//
Serial3.begin(map_baudrate(g.serial3_baud,SERIAL3_BAUD), 128, 128);
#ifdef RADIO_OVERRIDE_DEFAULTS
{
int16_t rc_override[8] = RADIO_OVERRIDE_DEFAULTS;
APM_RC.setHIL(rc_override);
}
#endif
#if FRAME_CONFIG == HELI_FRAME
g.heli_servo_manual = false;
heli_init_swash(); // heli initialisation
#endif
RC_Channel::set_apm_rc(&APM_RC);
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up the timer libs
init_camera();
timer_scheduler.init( &isr_registry );
#if HIL_MODE != HIL_MODE_ATTITUDE
#if CONFIG_ADC == ENABLED
// begin filtering the ADC Gyros
adc.filter_result = true;
adc.Init(&timer_scheduler); // APM ADC library initialization
#endif // CONFIG_ADC
#if CONFIG_APM_HARDWARE == APM_HARDWARE_PURPLE
barometer.Init(1, true);
#else
barometer.Init(1, false);
#endif // CONFIG_APM_HARDWARE
#endif // HIL_MODE
// Do GPS init
g_gps = &g_gps_driver;
g_gps->init(); // GPS Initialization
g_gps->callback = mavlink_delay;
// init the GCS
gcs0.init(&Serial);
gcs3.init(&Serial3);
if(g.compass_enabled)
init_compass();
#ifdef OPTFLOW_ENABLED
// init the optical flow sensor
if(g.optflow_enabled) {
init_optflow();
}
#endif
// agmatthews USERHOOKS
#ifdef USERHOOK_INIT
USERHOOK_INIT
#endif
#if LOGGING_ENABLED == ENABLED
DataFlash.Init();
#endif
#if CLI_ENABLED == ENABLED && CLI_SLIDER_ENABLED == ENABLED
// If the switch is in 'menu' mode, run the main menu.
//
// Since we can't be sure that the setup or test mode won't leave
// the system in an odd state, we don't let the user exit the top
// menu; they must reset in order to fly.
//
if (check_startup_for_CLI()) {
digitalWrite(A_LED_PIN, LED_ON); // turn on setup-mode LED
Serial.printf_P(PSTR("\nCLI:\n\n"));
run_cli();
}
#else
Serial.printf_P(PSTR("\nPress ENTER 3 times for CLI\n\n"));
#endif // CLI_ENABLED
#if LOGGING_ENABLED == ENABLED
if(g.log_bitmask != 0){
// TODO - Here we will check on the length of the last log
// We don't want to create a bunch of little logs due to powering on and off
start_new_log();
}
#endif
GPS_enabled = false;
#if HIL_MODE == HIL_MODE_DISABLED
// Read in the GPS
for (byte counter = 0; ; counter++) {
g_gps->update();
if (g_gps->status() != 0){
GPS_enabled = true;
break;
}
if (counter >= 2) {
GPS_enabled = false;
break;
}
}
#else
GPS_enabled = true;
#endif
// lengthen the idle timeout for gps Auto_detect
// ---------------------------------------------
g_gps->idleTimeout = 20000;
// print the GPS status
// --------------------
report_gps();
#if HIL_MODE != HIL_MODE_ATTITUDE
// read Baro pressure at ground
//-----------------------------
init_barometer();
#endif
// initialize commands
// -------------------
init_commands();
// set the correct flight mode
// ---------------------------
reset_control_switch();
#if HIL_MODE != HIL_MODE_ATTITUDE
dcm.kp_roll_pitch(0.030000);
dcm.ki_roll_pitch(0.00001278), // 50 hz I term
dcm.kp_yaw(0.08);
dcm.ki_yaw(0.00004);
#endif
// init the Z damopener
// --------------------
#if ACCEL_ALT_HOLD == 1
init_z_damper();
#endif
startup_ground();
Log_Write_Startup();
Log_Write_Data(10, g.pi_stabilize_roll.kP());
Log_Write_Data(11, g.pi_stabilize_pitch.kP());
Log_Write_Data(12, g.pi_rate_roll.kP());
Log_Write_Data(13, g.pi_rate_pitch.kP());
SendDebug("\nReady to FLY ");
}
//********************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//********************************************************************************
static void startup_ground(void)
{
gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START"));
#if HIL_MODE != HIL_MODE_ATTITUDE
// Warm up and read Gyro offsets
// -----------------------------
imu.init(IMU::COLD_START, mavlink_delay, &timer_scheduler);
#if CLI_ENABLED == ENABLED
report_imu();
#endif
#endif
// reset the leds
// ---------------------------
clear_leds();
}
/*
#define YAW_HOLD 0
#define YAW_ACRO 1
#define YAW_AUTO 2
#define YAW_LOOK_AT_HOME 3
#define ROLL_PITCH_STABLE 0
#define ROLL_PITCH_ACRO 1
#define ROLL_PITCH_AUTO 2
#define THROTTLE_MANUAL 0
#define THROTTLE_HOLD 1
#define THROTTLE_AUTO 2
*/
static void set_mode(byte mode)
{
if(control_mode == mode){
// don't switch modes if we are already in the correct mode.
return;
}
// if we don't have GPS lock
if(home_is_set == false){
// our max mode should be
if (mode > ALT_HOLD)
mode = STABILIZE;
}
old_control_mode = control_mode;
control_mode = mode;
control_mode = constrain(control_mode, 0, NUM_MODES - 1);
// used to stop fly_aways
motor_auto_armed = (g.rc_3.control_in > 0);
// clearing value used in interactive alt hold
manual_boost = 0;
// clearing value used to set WP's dynamically.
CH7_wp_index = 0;
Serial.println(flight_mode_strings[control_mode]);
// report the GPS and Motor arming status
led_mode = NORMAL_LEDS;
switch(control_mode)
{
case ACRO:
yaw_mode = YAW_ACRO;
roll_pitch_mode = ROLL_PITCH_ACRO;
throttle_mode = THROTTLE_MANUAL;
break;
case STABILIZE:
yaw_mode = YAW_HOLD;
roll_pitch_mode = ROLL_PITCH_STABLE;
throttle_mode = THROTTLE_MANUAL;
break;
case ALT_HOLD:
yaw_mode = ALT_HOLD_YAW;
roll_pitch_mode = ALT_HOLD_RP;
throttle_mode = ALT_HOLD_THR;
next_WP = current_loc;
break;
case AUTO:
yaw_mode = AUTO_YAW;
roll_pitch_mode = AUTO_RP;
throttle_mode = AUTO_THR;
// loads the commands from where we left off
init_commands();
break;
case CIRCLE:
yaw_mode = CIRCLE_YAW;
roll_pitch_mode = CIRCLE_RP;
throttle_mode = CIRCLE_THR;
next_WP = current_loc;
break;
case LOITER:
yaw_mode = LOITER_YAW;
roll_pitch_mode = LOITER_RP;
throttle_mode = LOITER_THR;
next_WP = current_loc;
break;
case POSITION:
yaw_mode = YAW_HOLD;
roll_pitch_mode = ROLL_PITCH_AUTO;
throttle_mode = THROTTLE_MANUAL;
next_WP = current_loc;
break;
case GUIDED:
yaw_mode = YAW_AUTO;
roll_pitch_mode = ROLL_PITCH_AUTO;
throttle_mode = THROTTLE_AUTO;
next_WP = current_loc;
set_next_WP(&guided_WP);
break;
case RTL:
yaw_mode = RTL_YAW;
roll_pitch_mode = RTL_RP;
throttle_mode = RTL_THR;
do_RTL();
break;
default:
break;
}
if(throttle_mode == THROTTLE_MANUAL){
// reset all of the throttle iterms
g.pi_alt_hold.reset_I();
g.pi_throttle.reset_I();
}else { // an automatic throttle
// todo: replace with a throttle cruise estimator
init_throttle_cruise();
}
if(roll_pitch_mode <= ROLL_PITCH_ACRO){
// We are under manual attitude control
// reset out nav parameters
reset_nav();
}
Log_Write_Mode(control_mode);
}
static void set_failsafe(boolean mode)
{
// only act on changes
// -------------------
if(failsafe != mode){
// store the value so we don't trip the gate twice
// -----------------------------------------------
failsafe = mode;
if (failsafe == false){
// We've regained radio contact
// ----------------------------
failsafe_off_event();
}else{
// We've lost radio contact
// ------------------------
failsafe_on_event();
}
}
}
static void
init_compass()
{
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft
dcm.set_compass(&compass);
compass.init();
compass.get_offsets(); // load offsets to account for airframe magnetic interference
}
#ifdef OPTFLOW_ENABLED
static void
init_optflow()
{
if( optflow.init() == false ) {
g.optflow_enabled = false;
//SendDebug("\nFailed to Init OptFlow ");
}
optflow.set_orientation(OPTFLOW_ORIENTATION); // set optical flow sensor's orientation on aircraft
optflow.set_field_of_view(OPTFLOW_FOV); // set optical flow sensor's field of view
}
#endif
static void
init_simple_bearing()
{
initial_simple_bearing = dcm.yaw_sensor;
}
static void
init_throttle_cruise()
{
// are we moving from manual throttle to auto_throttle?
if((old_control_mode <= STABILIZE) && (g.rc_3.control_in > MINIMUM_THROTTLE)){
g.pi_throttle.reset_I();
g.pi_alt_hold.reset_I();
g.throttle_cruise.set_and_save(g.rc_3.control_in);
}
}
#if CLI_SLIDER_ENABLED == ENABLED && CLI_ENABLED == ENABLED
static boolean
check_startup_for_CLI()
{
return (digitalRead(SLIDE_SWITCH_PIN) == 0);
}
#endif // CLI_ENABLED
/*
map from a 8 bit EEPROM baud rate to a real baud rate
*/
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
{
switch (rate) {
case 9: return 9600;
case 19: return 19200;
case 38: return 38400;
case 57: return 57600;
case 111: return 111100;
case 115: return 115200;
}
//Serial.println_P(PSTR("Invalid SERIAL3_BAUD"));
return default_baud;
}