ardupilot/libraries/AP_Motors/AP_MotorsHeli.cpp
rmackay9 71ad185238 ArduCopter - AP_Motors library - added new library which has few advantages over current code:
1. it's step towards rearchitecting the current code base ahead of a move to RTOS.
     2. internally it uses a MatrixTable for the Quad, Octa, OctaQuad, Y6 frames.
     3. it implements the missing stability patch for Octa and OctaQuads (still missing for Y6)

Later check-ins will incorporate into the main ArduCopter code.
2012-04-02 17:26:37 +09:00

370 lines
12 KiB
C++

/*
AP_MotorsHeli.cpp - ArduCopter motors library
Code by RandyMackay. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
#include "AP_MotorsHeli.h"
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
AP_NESTEDGROUPINFO(AP_Motors, 0),
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, servo1_pos),
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, servo2_pos),
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, servo3_pos),
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, roll_max),
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, pitch_max),
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, collective_min),
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, collective_max),
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, collective_mid),
AP_GROUPINFO("GYR_ENABLE", 9, AP_MotorsHeli, ext_gyro_enabled),
AP_GROUPINFO("SWASH_TYPE", 10, AP_MotorsHeli, swash_type), // changed from trunk
AP_GROUPINFO("GYR_GAIN", 11, AP_MotorsHeli, ext_gyro_gain),
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, servo_manual),
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, phase_angle), // changed from trunk
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, collective_yaw_effect), // changed from trunk
AP_GROUPEND
};
// init
void AP_MotorsHeli::Init()
{
// set update rate
set_update_rate(_speed_hz);
}
// set update rate to motors - a value in hertz or AP_MOTORS_SPEED_INSTANT_PWM for instant pwm
void AP_MotorsHeli::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
if( _speed_hz != AP_MOTORS_SPEED_INSTANT_PWM ) {
_rc->SetFastOutputChannels(_BV(_motor_to_channel_map[AP_MOTORS_MOT_1]) | _BV(_motor_to_channel_map[AP_MOTORS_MOT_2]) | _BV(_motor_to_channel_map[AP_MOTORS_MOT_3]) | _BV(_motor_to_channel_map[AP_MOTORS_MOT_4]), _speed_hz);
}
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsHeli::enable()
{
// enable output channels
_rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_1]); // swash servo 1
_rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_2]); // swash servo 2
_rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_3]); // swash servo 3
_rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_4]); // yaw
_rc->enable_out(AP_MOTORS_HELI_EXT_GYRO); // for external gyro
}
// output_min - sends minimum values out to the motors
void AP_MotorsHeli::output_min()
{
// move swash to mid
move_swash(0,0,500,0);
}
// output_armed - sends commands to the motors
void AP_MotorsHeli::output_armed()
{
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
if( servo_manual == 1 ) {
_rc_roll->servo_out = _rc_roll->control_in;
_rc_pitch->servo_out = _rc_pitch->control_in;
_rc_throttle->servo_out = _rc_throttle->control_in;
_rc_yaw->servo_out = _rc_yaw->control_in;
}
//static int counter = 0;
_rc_roll->calc_pwm();
_rc_pitch->calc_pwm();
_rc_throttle->calc_pwm();
_rc_yaw->calc_pwm();
move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out );
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_disarmed()
{
if(_rc_throttle->control_in > 0){
// we have pushed up the throttle
// remove safety
_auto_armed = true;
}
// for helis - armed or disarmed we allow servos to move
output_armed();
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_test()
{
int16_t i;
// Send minimum values to all motors
output_min();
// servo 1
for( i=0; i<5; i++ ) {
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim - 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 0);
delay(300);
}
// servo 2
for( i=0; i<5; i++ ) {
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim - 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 0);
delay(300);
}
// servo 3
for( i=0; i<5; i++ ) {
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim - 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 0);
delay(300);
}
// external gyro
if( ext_gyro_enabled ) {
_rc->OutputCh(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
}
// servo 4
for( i=0; i<5; i++ ) {
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim - 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 0);
delay(300);
}
// Send minimum values to all motors
output_min();
}
// reset_swash - free up swash for maximum movements. Used for set-up
void AP_MotorsHeli::reset_swash()
{
// free up servo ranges
_servo_1->radio_min = 1000;
_servo_1->radio_max = 2000;
_servo_2->radio_min = 1000;
_servo_2->radio_max = 2000;
_servo_3->radio_min = 1000;
_servo_3->radio_max = 2000;
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform servo control mixing
// roll factors
_rollFactor[CH_1] = cos(radians(servo1_pos + 90 - phase_angle));
_rollFactor[CH_2] = cos(radians(servo2_pos + 90 - phase_angle));
_rollFactor[CH_3] = cos(radians(servo3_pos + 90 - phase_angle));
// pitch factors
_pitchFactor[CH_1] = cos(radians(servo1_pos - phase_angle));
_pitchFactor[CH_2] = cos(radians(servo2_pos - phase_angle));
_pitchFactor[CH_3] = cos(radians(servo3_pos - phase_angle));
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
}else{ //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
// pitch factors
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
// collective factors
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
// set roll, pitch and throttle scaling
_roll_scaler = 1.0;
_pitch_scaler = 1.0;
_collective_scalar = ((float)(_rc_throttle->radio_max - _rc_throttle->radio_min))/1000.0;
// we must be in set-up mode so mark swash as uninitialised
_swash_initialised = false;
}
// init_swash - initialise the swash plate
void AP_MotorsHeli::init_swash()
{
// swash servo initialisation
_servo_1->set_range(0,1000);
_servo_2->set_range(0,1000);
_servo_3->set_range(0,1000);
_servo_4->set_angle(4500);
// ensure _coll values are reasonable
if( collective_min >= collective_max ) {
collective_min = 1000;
collective_max = 2000;
}
collective_mid = constrain(collective_mid, collective_min, collective_max);
// calculate throttle mid point
throttle_mid = ((float)(collective_mid-collective_min))/((float)(collective_max-collective_min))*1000.0;
// determine roll, pitch and throttle scaling
_roll_scaler = (float)roll_max/4500.0;
_pitch_scaler = (float)pitch_max/4500.0;
_collective_scalar = ((float)(collective_max-collective_min))/1000.0;
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing
// roll factors
_rollFactor[CH_1] = cos(radians(servo1_pos + 90 - phase_angle));
_rollFactor[CH_2] = cos(radians(servo2_pos + 90 - phase_angle));
_rollFactor[CH_3] = cos(radians(servo3_pos + 90 - phase_angle));
// pitch factors
_pitchFactor[CH_1] = cos(radians(servo1_pos - phase_angle));
_pitchFactor[CH_2] = cos(radians(servo2_pos - phase_angle));
_pitchFactor[CH_3] = cos(radians(servo3_pos - phase_angle));
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
}else{ //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
// pitch factors
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
// collective factors
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
// servo min/max values
_servo_1->radio_min = 1000;
_servo_1->radio_max = 2000;
_servo_2->radio_min = 1000;
_servo_2->radio_max = 2000;
_servo_3->radio_min = 1000;
_servo_3->radio_max = 2000;
// mark swash as initialised
_swash_initialised = true;
}
//
// heli_move_swash - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -4500 ~ 4500
// pitch: -4500 ~ 4500
// collective: 0 ~ 1000
// yaw: -4500 ~ 4500
//
void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_out, int16_t yaw_out)
{
int16_t yaw_offset = 0;
int16_t coll_out_scaled;
if( servo_manual == 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)?
// check if we need to free up the swash
if( _swash_initialised ) {
reset_swash();
}
coll_out_scaled = coll_out * _collective_scalar + _rc_throttle->radio_min - 1000;
}else{ // regular flight mode
// check if we need to reinitialise the swash
if( !_swash_initialised ) {
init_swash();
}
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
// across the input range instead of stopping when the input hits the constrain value
// these calculations are based on an assumption of the user specified roll_max and pitch_max
// coming into this equation at 4500 or less, and based on the original assumption of the
// total _servo_x.servo_out range being -4500 to 4500.
roll_out = roll_out * _roll_scaler;
roll_out = constrain(roll_out, (int16_t)-roll_max, (int16_t)roll_max);
pitch_out = pitch_out * _pitch_scaler;
pitch_out = constrain(pitch_out, (int16_t)-pitch_max, (int16_t)pitch_max);
// scale collective pitch
coll_out = constrain(coll_out, 0, 1000);
coll_out_scaled = coll_out * _collective_scalar + collective_min - 1000;
// rudder feed forward based on collective
if( !ext_gyro_enabled ) {
yaw_offset = collective_yaw_effect * abs(coll_out_scaled - collective_mid);
}
}
// swashplate servos
_servo_1->servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1->radio_trim-1500);
_servo_2->servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2->radio_trim-1500);
if( swash_type == AP_MOTORS_HELI_SWASH_H1 ) {
_servo_1->servo_out += 500;
_servo_2->servo_out += 500;
}
_servo_3->servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3->radio_trim-1500);
_servo_4->servo_out = yaw_out + yaw_offset;
// use servo_out to calculate pwm_out and radio_out
_servo_1->calc_pwm();
_servo_2->calc_pwm();
_servo_3->calc_pwm();
_servo_4->calc_pwm();
// actually move the servos
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_out);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_out);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_out);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_out);
// to be compatible with other frame types
motor_out[AP_MOTORS_MOT_1] = _servo_1->radio_out;
motor_out[AP_MOTORS_MOT_2] = _servo_2->radio_out;
motor_out[AP_MOTORS_MOT_3] = _servo_3->radio_out;
motor_out[AP_MOTORS_MOT_4] = _servo_4->radio_out;
// output gyro value
if( ext_gyro_enabled ) {
_rc->OutputCh(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
}
// InstantPWM
if( _speed_hz == AP_MOTORS_SPEED_INSTANT_PWM ) {
_rc->Force_Out0_Out1();
_rc->Force_Out2_Out3();
}
}