ardupilot/ArduCopter/commands_logic.pde

894 lines
22 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/********************************************************************************/
// Command Event Handlers
/********************************************************************************/
static void process_nav_command()
{
switch(command_nav_queue.id){
case MAV_CMD_NAV_TAKEOFF: // 22
do_takeoff();
break;
case MAV_CMD_NAV_WAYPOINT: // 16 Navigate to Waypoint
do_nav_wp();
break;
case MAV_CMD_NAV_LAND: // 21 LAND to Waypoint
yaw_mode = YAW_HOLD;
do_land();
break;
case MAV_CMD_NAV_LOITER_UNLIM: // 17 Loiter indefinitely
do_loiter_unlimited();
break;
case MAV_CMD_NAV_LOITER_TURNS: //18 Loiter N Times
do_loiter_turns();
break;
case MAV_CMD_NAV_LOITER_TIME: // 19
do_loiter_time();
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH: //20
do_RTL();
break;
// point the copter and camera at a region of interest (ROI)
case MAV_CMD_NAV_ROI: // 80
do_nav_roi();
break;
default:
break;
}
}
static void process_cond_command()
{
switch(command_cond_queue.id){
case MAV_CMD_CONDITION_DELAY: // 112
do_wait_delay();
break;
case MAV_CMD_CONDITION_DISTANCE: // 114
do_within_distance();
break;
case MAV_CMD_CONDITION_CHANGE_ALT: // 113
do_change_alt();
break;
case MAV_CMD_CONDITION_YAW: // 115
do_yaw();
break;
default:
break;
}
}
static void process_now_command()
{
switch(command_cond_queue.id){
case MAV_CMD_DO_JUMP: // 177
do_jump();
break;
case MAV_CMD_DO_CHANGE_SPEED: // 178
do_change_speed();
break;
case MAV_CMD_DO_SET_HOME: // 179
do_set_home();
break;
case MAV_CMD_DO_SET_SERVO: // 183
do_set_servo();
break;
case MAV_CMD_DO_SET_RELAY: // 181
do_set_relay();
break;
case MAV_CMD_DO_REPEAT_SERVO: // 184
do_repeat_servo();
break;
case MAV_CMD_DO_REPEAT_RELAY: // 182
do_repeat_relay();
break;
#if CAMERA == ENABLED
case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty|
break;
case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)|
break;
case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty|
break;
#endif
#if MOUNT == ENABLED
case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty|
camera_mount.configure_cmd();
break;
case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty|
camera_mount.control_cmd();
break;
#endif
default:
// do nothing with unrecognized MAVLink messages
break;
}
}
/********************************************************************************/
// Verify command Handlers
/********************************************************************************/
static bool verify_must()
{
switch(command_nav_queue.id) {
case MAV_CMD_NAV_TAKEOFF:
return verify_takeoff();
break;
case MAV_CMD_NAV_WAYPOINT:
return verify_nav_wp();
break;
case MAV_CMD_NAV_LAND:
if(g.sonar_enabled == true){
return verify_land_sonar();
}else{
return verify_land_baro();
}
break;
case MAV_CMD_NAV_LOITER_UNLIM:
return verify_loiter_unlimited();
break;
case MAV_CMD_NAV_LOITER_TURNS:
return verify_loiter_turns();
break;
case MAV_CMD_NAV_LOITER_TIME:
return verify_loiter_time();
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
return verify_RTL();
break;
case MAV_CMD_NAV_ROI: // 80
return verify_nav_roi();
break;
default:
//gcs_send_text_P(SEVERITY_HIGH,PSTR("<verify_must: default> No current Must commands"));
return false;
break;
}
}
static bool verify_may()
{
switch(command_cond_queue.id) {
case MAV_CMD_CONDITION_DELAY:
return verify_wait_delay();
break;
case MAV_CMD_CONDITION_DISTANCE:
return verify_within_distance();
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
return verify_change_alt();
break;
case MAV_CMD_CONDITION_YAW:
return verify_yaw();
break;
default:
//gcs_send_text_P(SEVERITY_HIGH,PSTR("<verify_must: default> No current May commands"));
return false;
break;
}
}
/********************************************************************************/
//
/********************************************************************************/
static void do_RTL(void)
{
// TODO: Altitude option from mission planner
Location temp = home;
temp.alt = get_RTL_alt();
//so we know where we are navigating from
// --------------------------------------
next_WP = current_loc;
// Loads WP from Memory
// --------------------
set_next_WP(&temp);
// We want to come home and stop on a dime
slow_wp = true;
// output control mode to the ground station
// -----------------------------------------
gcs_send_message(MSG_HEARTBEAT);
}
/********************************************************************************/
// Nav (Must) commands
/********************************************************************************/
static void do_takeoff()
{
wp_control = LOITER_MODE;
// Start with current location
Location temp = current_loc;
// alt is always relative
temp.alt = command_nav_queue.alt;
// prevent flips
reset_I_all();
// Set our waypoint
set_next_WP(&temp);
}
static void do_nav_wp()
{
wp_control = WP_MODE;
slow_wp = false;
set_next_WP(&command_nav_queue);
// this is our bitmask to verify we have met all conditions to move on
wp_verify_byte = 0;
// this will be used to remember the time in millis after we reach or pass the WP.
loiter_time = 0;
// this is the delay, stored in seconds and expanded to millis
loiter_time_max = command_nav_queue.p1 * 1000;
if((next_WP.options & WP_OPTION_ALT_REQUIRED) == false){
wp_verify_byte |= NAV_ALTITUDE;
}
}
static void do_land()
{
wp_control = LOITER_MODE;
// just to make sure
land_complete = false;
// landing boost lowers the main throttle to mimmick
// the effect of a user's hand
landing_boost = 0;
// A counter that goes up if our climb rate stalls out.
ground_detector = 0;
// hold at our current location
set_next_WP(&current_loc);
// Set a new target altitude
set_new_altitude(0);
}
static void do_loiter_unlimited()
{
wp_control = LOITER_MODE;
//Serial.println("dloi ");
if(command_nav_queue.lat == 0){
set_next_WP(&current_loc);
wp_control = LOITER_MODE;
}else{
set_next_WP(&command_nav_queue);
wp_control = WP_MODE;
}
}
static void do_loiter_turns()
{
wp_control = CIRCLE_MODE;
if(command_nav_queue.lat == 0){
// allow user to specify just the altitude
if(command_nav_queue.alt > 0){
current_loc.alt = command_nav_queue.alt;
}
set_next_WP(&current_loc);
}else{
set_next_WP(&command_nav_queue);
}
circle_WP = next_WP;
loiter_total = command_nav_queue.p1 * 360;
loiter_sum = 0;
old_target_bearing = target_bearing;
circle_angle = target_bearing + 18000;
circle_angle = wrap_360(circle_angle);
circle_angle *= RADX100;
}
static void do_loiter_time()
{
if(command_nav_queue.lat == 0){
wp_control = LOITER_MODE;
loiter_time = millis();
set_next_WP(&current_loc);
}else{
wp_control = WP_MODE;
set_next_WP(&command_nav_queue);
}
loiter_time_max = command_nav_queue.p1 * 1000; // units are (seconds)
}
/********************************************************************************/
// Verify Nav (Must) commands
/********************************************************************************/
static bool verify_takeoff()
{
// wait until we are ready!
if(g.rc_3.control_in == 0){
return false;
}
// are we above our target altitude?
return (current_loc.alt > next_WP.alt);
}
// called at 10hz
static bool verify_land_sonar()
{
static float icount = 1;
if(current_loc.alt > 300){
wp_control = LOITER_MODE;
icount = 1;
ground_detector = 0;
}else{
// begin to pull down on the throttle
landing_boost++;
landing_boost = min(landing_boost, 40);
}
if(current_loc.alt < 200 ){
wp_control = NO_NAV_MODE;
}
if(current_loc.alt < 150 ){
// if we are low or don't seem to be decending much, increment ground detector
if(current_loc.alt < 80 || abs(climb_rate) < 20) {
landing_boost++; // reduce the throttle at twice the normal rate
if(ground_detector < 30) {
ground_detector++;
}else if (ground_detector == 30){
land_complete = true;
if(g.rc_3.control_in == 0){
ground_detector++;
init_disarm_motors();
}
return true;
}
}
}
return false;
}
static bool verify_land_baro()
{
if(current_loc.alt > 300){
wp_control = LOITER_MODE;
ground_detector = 0;
}else{
// begin to pull down on the throttle
landing_boost++;
landing_boost = min(landing_boost, 40);
}
if(current_loc.alt < 100 ){
wp_control = NO_NAV_MODE;
}
if(current_loc.alt < 200 ){
if(abs(climb_rate) < 40) {
landing_boost++;
if(ground_detector < 30) {
ground_detector++;
}else if (ground_detector == 30){
land_complete = true;
if(g.rc_3.control_in == 0){
ground_detector++;
init_disarm_motors();
}
return true;
}
}
}
return false;
}
static bool verify_nav_wp()
{
// Altitude checking
if(next_WP.options & WP_OPTION_ALT_REQUIRED){
// we desire a certain minimum altitude
if(alt_change_flag == REACHED_ALT){
// we have reached that altitude
wp_verify_byte |= NAV_ALTITUDE;
}
}
// Did we pass the WP? // Distance checking
if((wp_distance <= (waypoint_radius * 100)) || check_missed_wp()){
// if we have a distance calc error, wp_distance may be less than 0
if(wp_distance > 0){
wp_verify_byte |= NAV_LOCATION;
if(loiter_time == 0){
loiter_time = millis();
}
}
}
// Hold at Waypoint checking, we cant move on until this is OK
if(wp_verify_byte & NAV_LOCATION){
// we have reached our goal
// loiter at the WP
wp_control = LOITER_MODE;
if ((millis() - loiter_time) > loiter_time_max) {
wp_verify_byte |= NAV_DELAY;
//gcs_send_text_P(SEVERITY_LOW,PSTR("verify_must: LOITER time complete"));
//Serial.println("vlt done");
}
}
if(wp_verify_byte >= 7){
//if(wp_verify_byte & NAV_LOCATION){
char message[30];
sprintf(message,"Reached Command #%i",command_nav_index);
gcs_send_text(SEVERITY_LOW,message);
wp_verify_byte = 0;
copter_leds_nav_blink = 15; // Cause the CopterLEDs to blink three times to indicate waypoint reached
return true;
}else{
return false;
}
}
static bool verify_loiter_unlimited()
{
if(wp_control == WP_MODE && wp_distance <= (g.waypoint_radius * 100)){
// switch to position hold
wp_control = LOITER_MODE;
}
return false;
}
static bool verify_loiter_time()
{
if(wp_control == LOITER_MODE){
if ((millis() - loiter_time) > loiter_time_max) {
return true;
}
}
if(wp_control == WP_MODE && wp_distance <= (g.waypoint_radius * 100)){
// reset our loiter time
loiter_time = millis();
// switch to position hold
wp_control = LOITER_MODE;
}
return false;
}
static bool verify_loiter_turns()
{
//Serial.printf("loiter_sum: %d \n", loiter_sum);
// have we rotated around the center enough times?
// -----------------------------------------------
if(abs(loiter_sum) > loiter_total) {
loiter_total = 0;
loiter_sum = 0;
//gcs_send_text_P(SEVERITY_LOW,PSTR("verify_must: LOITER orbits complete"));
// clear the command queue;
return true;
}
return false;
}
static bool verify_RTL()
{
wp_control = WP_MODE;
// Did we pass the WP? // Distance checking
if((wp_distance <= (g.waypoint_radius * 100)) || check_missed_wp()){
wp_control = LOITER_MODE;
//gcs_send_text_P(SEVERITY_LOW,PSTR("Reached home"));
return true;
}else{
return false;
}
}
/********************************************************************************/
// Condition (May) commands
/********************************************************************************/
static void do_wait_delay()
{
//Serial.print("dwd ");
condition_start = millis();
condition_value = command_cond_queue.lat * 1000; // convert to milliseconds
//Serial.println(condition_value,DEC);
}
static void do_change_alt()
{
Location temp = next_WP;
condition_start = current_loc.alt;
//condition_value = command_cond_queue.alt;
temp.alt = command_cond_queue.alt;
set_next_WP(&temp);
}
static void do_within_distance()
{
condition_value = command_cond_queue.lat * 100;
}
static void do_yaw()
{
//Serial.println("dyaw ");
yaw_tracking = MAV_ROI_NONE;
// target angle in degrees
command_yaw_start = nav_yaw; // current position
command_yaw_start_time = millis();
command_yaw_dir = command_cond_queue.p1; // 1 = clockwise, 0 = counterclockwise
command_yaw_speed = command_cond_queue.lat * 100; // ms * 100
command_yaw_relative = command_cond_queue.lng; // 1 = Relative, 0 = Absolute
// if unspecified turn at 30° per second
if(command_yaw_speed == 0)
command_yaw_speed = 3000;
// ensure direction is valid, if invalid default to counter clockwise
if(command_yaw_dir > 1)
command_yaw_dir = 0; // 0 = counter clockwise, 1 = clockwise
if(command_yaw_relative == 1){
// relative
command_yaw_delta = command_cond_queue.alt * 100;
if(command_yaw_dir == 0){ // 0 = counter clockwise, 1 = clockwise
command_yaw_end = command_yaw_start - command_yaw_delta;
}else{
command_yaw_end = command_yaw_start + command_yaw_delta;
}
command_yaw_end = wrap_360(command_yaw_end);
}else{
// absolute
command_yaw_end = command_cond_queue.alt * 100;
// calculate the delta travel in deg * 100
if(command_yaw_dir == 0){ // 0 = counter clockwise, 1 = clockwise
if(command_yaw_start > command_yaw_end){
command_yaw_delta = command_yaw_start - command_yaw_end;
}else{
command_yaw_delta = 36000 + (command_yaw_start - command_yaw_end);
}
}else{
if(command_yaw_start >= command_yaw_end){
command_yaw_delta = 36000 - (command_yaw_start - command_yaw_end);
}else{
command_yaw_delta = command_yaw_end - command_yaw_start;
}
}
command_yaw_delta = wrap_360(command_yaw_delta);
}
// rate to turn deg per second - default is ten
command_yaw_time = (command_yaw_delta / command_yaw_speed) * 1000;
}
/********************************************************************************/
// Verify Condition (May) commands
/********************************************************************************/
static bool verify_wait_delay()
{
//Serial.print("vwd");
if ((unsigned)(millis() - condition_start) > (unsigned)condition_value){
//Serial.println("y");
condition_value = 0;
return true;
}
//Serial.println("n");
return false;
}
static bool verify_change_alt()
{
//Serial.printf("change_alt, ca:%d, na:%d\n", (int)current_loc.alt, (int)next_WP.alt);
if ((int32_t)condition_start < next_WP.alt){
// we are going higer
if(current_loc.alt > next_WP.alt){
return true;
}
}else{
// we are going lower
if(current_loc.alt < next_WP.alt){
return true;
}
}
return false;
}
static bool verify_within_distance()
{
//Serial.printf("cond dist :%d\n", (int)condition_value);
if (wp_distance < condition_value){
condition_value = 0;
return true;
}
return false;
}
static bool verify_yaw()
{
//Serial.printf("vyaw %d\n", (int)(nav_yaw/100));
if((millis() - command_yaw_start_time) > command_yaw_time){
// time out
// make sure we hold at the final desired yaw angle
nav_yaw = command_yaw_end;
auto_yaw = nav_yaw;
// TO-DO: there's still a problem with Condition_yaw, it will do it two times(probably more) sometimes, if it hasn't reached the next waypoint yet.
// it should only do it one time so there should be code here to prevent another Condition_Yaw.
//Serial.println("Y");
return true;
}else{
// else we need to be at a certain place
// power is a ratio of the time : .5 = half done
float power = (float)(millis() - command_yaw_start_time) / (float)command_yaw_time;
if(command_yaw_dir == 0) { // 0 = counter clockwise, 1 = clockwise
nav_yaw = command_yaw_start - ((float)command_yaw_delta * power );
}else{
nav_yaw = command_yaw_start + ((float)command_yaw_delta * power );
}
nav_yaw = wrap_360(nav_yaw);
auto_yaw = nav_yaw;
//Serial.printf("ny %ld\n",nav_yaw);
return false;
}
}
// verify_nav_roi - verifies that actions required by MAV_CMD_NAV_ROI have completed
// we assume the camera command has been successfully implemented by the do_nav_roi command
// so all we need to check is whether we needed to yaw the copter (due to the mount type) and
// whether that yaw has completed
// TO-DO: add support for other features of MAV_NAV_ROI including pointing at a given waypoint
static bool verify_nav_roi()
{
#if MOUNT == ENABLED
// check if mount type requires us to rotate the quad
if( camera_mount.get_mount_type() == AP_Mount::k_tilt_roll ) {
// ensure yaw has gotten to within 2 degrees of the target
if( abs(wrap_180(ahrs.yaw_sensor-auto_yaw)) <= 200 ) {
nav_yaw = auto_yaw; // ensure target yaw for YAW_HOLD is our desired yaw
return true;
}else{
return false;
}
}else{
// if no rotation required, assume the camera instruction was implemented immediately
return true;
}
#else
// if we have no camera mount simply check we've reached the desired yaw
// ensure yaw has gotten to within 2 degrees of the target
if( abs(wrap_180(ahrs.yaw_sensor-auto_yaw)) <= 200 ) {
nav_yaw = auto_yaw; // ensure target yaw for YAW_HOLD is our desired yaw
return true;
}else{
return false;
}
#endif
}
/********************************************************************************/
// Do (Now) commands
/********************************************************************************/
static void do_change_speed()
{
g.waypoint_speed_max = command_cond_queue.p1 * 100;
}
static void do_target_yaw()
{
yaw_tracking = command_cond_queue.p1;
if(yaw_tracking == MAV_ROI_LOCATION){
target_WP = command_cond_queue;
}
}
static void do_loiter_at_location()
{
next_WP = current_loc;
}
static void do_jump()
{
// Used to track the state of the jump command in Mission scripting
// -10 is a value that means the register is unused
// when in use, it contains the current remaining jumps
static int8_t jump = -10; // used to track loops in jump command
//Serial.printf("do Jump: %d\n", jump);
if(jump == -10){
//Serial.printf("Fresh Jump\n");
// we use a locally stored index for jump
jump = command_cond_queue.lat;
}
//Serial.printf("Jumps left: %d\n",jump);
if(jump > 0) {
//Serial.printf("Do Jump to %d\n",command_cond_queue.p1);
jump--;
change_command(command_cond_queue.p1);
} else if (jump == 0){
//Serial.printf("Did last jump\n");
// we're done, move along
jump = -11;
} else if (jump == -1) {
//Serial.printf("jumpForever\n");
// repeat forever
change_command(command_cond_queue.p1);
}
}
static void do_set_home()
{
if(command_cond_queue.p1 == 1) {
init_home();
} else {
home.id = MAV_CMD_NAV_WAYPOINT;
home.lng = command_cond_queue.lng; // Lon * 10**7
home.lat = command_cond_queue.lat; // Lat * 10**7
home.alt = 0;
home_is_set = true;
}
}
static void do_set_servo()
{
APM_RC.OutputCh(command_cond_queue.p1 - 1, command_cond_queue.alt);
}
static void do_set_relay()
{
if (command_cond_queue.p1 == 1) {
relay.on();
} else if (command_cond_queue.p1 == 0) {
relay.off();
}else{
relay.toggle();
}
}
static void do_repeat_servo()
{
event_id = command_cond_queue.p1 - 1;
if(command_cond_queue.p1 >= CH_5 + 1 && command_cond_queue.p1 <= CH_8 + 1) {
event_timer = 0;
event_value = command_cond_queue.alt;
event_repeat = command_cond_queue.lat * 2;
event_delay = command_cond_queue.lng * 500.0; // /2 (half cycle time) * 1000 (convert to milliseconds)
switch(command_cond_queue.p1) {
case CH_5:
event_undo_value = g.rc_5.radio_trim;
break;
case CH_6:
event_undo_value = g.rc_6.radio_trim;
break;
case CH_7:
event_undo_value = g.rc_7.radio_trim;
break;
case CH_8:
event_undo_value = g.rc_8.radio_trim;
break;
}
update_events();
}
}
static void do_repeat_relay()
{
event_id = RELAY_TOGGLE;
event_timer = 0;
event_delay = command_cond_queue.lat * 500.0; // /2 (half cycle time) * 1000 (convert to milliseconds)
event_repeat = command_cond_queue.alt * 2;
update_events();
}
// do_nav_roi - starts actions required by MAV_CMD_NAV_ROI
// this involves either moving the camera to point at the ROI (region of interest)
// and possibly rotating the copter to point at the ROI if our mount type does not support a yaw feature
// Note: the ROI should already be in the command_nav_queue global variable
// TO-DO: add support for other features of MAV_NAV_ROI including pointing at a given waypoint
static void do_nav_roi()
{
#if MOUNT == ENABLED
// check if mount type requires us to rotate the quad
if( camera_mount.get_mount_type() == AP_Mount::k_tilt_roll ) {
yaw_tracking = MAV_ROI_LOCATION;
target_WP = command_nav_queue;
auto_yaw = get_bearing_cd(&current_loc, &target_WP);
}
// send the command to the camera mount
camera_mount.set_roi_cmd(&command_nav_queue);
// TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below)
// 0: do nothing
// 1: point at next waypoint
// 2: point at a waypoint taken from WP# parameter (2nd parameter?)
// 3: point at a location given by alt, lon, lat parameters
// 4: point at a target given a target id (can't be implmented)
#else
// if we have no camera mount simply rotate the quad
yaw_tracking = MAV_ROI_LOCATION;
target_WP = command_nav_queue;
auto_yaw = get_bearing_cd(&current_loc, &target_WP);
#endif
}