ardupilot/ArduCopter/Log.cpp

658 lines
22 KiB
C++

#include "Copter.h"
#if LOGGING_ENABLED == ENABLED
// Code to Write and Read packets from AP_Logger log memory
// Code to interact with the user to dump or erase logs
struct PACKED log_Control_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
float throttle_in;
float angle_boost;
float throttle_out;
float throttle_hover;
float desired_alt;
float inav_alt;
int32_t baro_alt;
float desired_rangefinder_alt;
float rangefinder_alt;
float terr_alt;
int16_t target_climb_rate;
int16_t climb_rate;
};
// Write a control tuning packet
void Copter::Log_Write_Control_Tuning()
{
// get terrain altitude
float terr_alt = 0.0f;
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
if (!terrain.height_above_terrain(terr_alt, true)) {
terr_alt = logger.quiet_nan();
}
#endif
float des_alt_m = 0.0f;
int16_t target_climb_rate_cms = 0;
if (!flightmode->has_manual_throttle()) {
des_alt_m = pos_control->get_alt_target() / 100.0f;
target_climb_rate_cms = pos_control->get_vel_target_z();
}
// get surface tracking alts
float desired_rangefinder_alt;
if (!surface_tracking.get_target_dist_for_logging(desired_rangefinder_alt)) {
desired_rangefinder_alt = AP::logger().quiet_nan();
}
struct log_Control_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_CONTROL_TUNING_MSG),
time_us : AP_HAL::micros64(),
throttle_in : attitude_control->get_throttle_in(),
angle_boost : attitude_control->angle_boost(),
throttle_out : motors->get_throttle(),
throttle_hover : motors->get_throttle_hover(),
desired_alt : des_alt_m,
inav_alt : inertial_nav.get_altitude() / 100.0f,
baro_alt : baro_alt,
desired_rangefinder_alt : desired_rangefinder_alt,
rangefinder_alt : surface_tracking.get_dist_for_logging(),
terr_alt : terr_alt,
target_climb_rate : target_climb_rate_cms,
climb_rate : int16_t(inertial_nav.get_velocity_z()) // float -> int16_t
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
// Write an attitude packet
void Copter::Log_Write_Attitude()
{
Vector3f targets = attitude_control->get_att_target_euler_cd();
targets.z = wrap_360_cd(targets.z);
logger.Write_Attitude(targets);
logger.Write_Rate(ahrs_view, *motors, *attitude_control, *pos_control);
if (should_log(MASK_LOG_PID)) {
logger.Write_PID(LOG_PIDR_MSG, attitude_control->get_rate_roll_pid().get_pid_info());
logger.Write_PID(LOG_PIDP_MSG, attitude_control->get_rate_pitch_pid().get_pid_info());
logger.Write_PID(LOG_PIDY_MSG, attitude_control->get_rate_yaw_pid().get_pid_info());
logger.Write_PID(LOG_PIDA_MSG, pos_control->get_accel_z_pid().get_pid_info() );
}
}
// Write an EKF and POS packet
void Copter::Log_Write_EKF_POS()
{
AP::ahrs_navekf().Log_Write();
logger.Write_AHRS2();
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.Log_Write_SIMSTATE();
#endif
logger.Write_POS();
}
struct PACKED log_MotBatt {
LOG_PACKET_HEADER;
uint64_t time_us;
float lift_max;
float bat_volt;
float bat_res;
float th_limit;
};
// Write an rate packet
void Copter::Log_Write_MotBatt()
{
#if FRAME_CONFIG != HELI_FRAME
struct log_MotBatt pkt_mot = {
LOG_PACKET_HEADER_INIT(LOG_MOTBATT_MSG),
time_us : AP_HAL::micros64(),
lift_max : (float)(motors->get_lift_max()),
bat_volt : (float)(motors->get_batt_voltage_filt()),
bat_res : (float)(battery.get_resistance()),
th_limit : (float)(motors->get_throttle_limit())
};
logger.WriteBlock(&pkt_mot, sizeof(pkt_mot));
#endif
}
struct PACKED log_Data_Int16t {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
int16_t data_value;
};
// Write an int16_t data packet
UNUSED_FUNCTION
void Copter::Log_Write_Data(LogDataID id, int16_t value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_Int16t pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_INT16_MSG),
time_us : AP_HAL::micros64(),
id : (uint8_t)id,
data_value : value
};
logger.WriteCriticalBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Data_UInt16t {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
uint16_t data_value;
};
// Write an uint16_t data packet
UNUSED_FUNCTION
void Copter::Log_Write_Data(LogDataID id, uint16_t value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_UInt16t pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_UINT16_MSG),
time_us : AP_HAL::micros64(),
id : (uint8_t)id,
data_value : value
};
logger.WriteCriticalBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Data_Int32t {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
int32_t data_value;
};
// Write an int32_t data packet
void Copter::Log_Write_Data(LogDataID id, int32_t value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_Int32t pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_INT32_MSG),
time_us : AP_HAL::micros64(),
id : (uint8_t)id,
data_value : value
};
logger.WriteCriticalBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Data_UInt32t {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
uint32_t data_value;
};
// Write a uint32_t data packet
void Copter::Log_Write_Data(LogDataID id, uint32_t value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_UInt32t pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_UINT32_MSG),
time_us : AP_HAL::micros64(),
id : (uint8_t)id,
data_value : value
};
logger.WriteCriticalBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_Data_Float {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t id;
float data_value;
};
// Write a float data packet
UNUSED_FUNCTION
void Copter::Log_Write_Data(LogDataID id, float value)
{
if (should_log(MASK_LOG_ANY)) {
struct log_Data_Float pkt = {
LOG_PACKET_HEADER_INIT(LOG_DATA_FLOAT_MSG),
time_us : AP_HAL::micros64(),
id : (uint8_t)id,
data_value : value
};
logger.WriteCriticalBlock(&pkt, sizeof(pkt));
}
}
struct PACKED log_ParameterTuning {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t parameter; // parameter we are tuning, e.g. 39 is CH6_CIRCLE_RATE
float tuning_value; // normalized value used inside tuning() function
float tuning_min; // tuning minimum value
float tuning_max; // tuning maximum value
};
void Copter::Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, float tune_min, float tune_max)
{
struct log_ParameterTuning pkt_tune = {
LOG_PACKET_HEADER_INIT(LOG_PARAMTUNE_MSG),
time_us : AP_HAL::micros64(),
parameter : param,
tuning_value : tuning_val,
tuning_min : tune_min,
tuning_max : tune_max
};
logger.WriteBlock(&pkt_tune, sizeof(pkt_tune));
}
// logs when baro or compass becomes unhealthy
void Copter::Log_Sensor_Health()
{
// check baro
if (sensor_health.baro != barometer.healthy()) {
sensor_health.baro = barometer.healthy();
AP::logger().Write_Error(LogErrorSubsystem::BARO,
(sensor_health.baro ? LogErrorCode::ERROR_RESOLVED : LogErrorCode::UNHEALTHY));
}
// check compass
if (sensor_health.compass != compass.healthy()) {
sensor_health.compass = compass.healthy();
AP::logger().Write_Error(LogErrorSubsystem::COMPASS, (sensor_health.compass ? LogErrorCode::ERROR_RESOLVED : LogErrorCode::UNHEALTHY));
}
// check primary GPS
if (sensor_health.primary_gps != gps.primary_sensor()) {
sensor_health.primary_gps = gps.primary_sensor();
AP::logger().Write_Event(LogEvent::GPS_PRIMARY_CHANGED);
}
}
struct PACKED log_SysIdD {
LOG_PACKET_HEADER;
uint64_t time_us;
float waveform_time;
float waveform_sample;
float waveform_freq;
float angle_x;
float angle_y;
float angle_z;
float accel_x;
float accel_y;
float accel_z;
};
// Write an rate packet
void Copter::Log_Write_SysID_Data(float waveform_time, float waveform_sample, float waveform_freq, float angle_x, float angle_y, float angle_z, float accel_x, float accel_y, float accel_z)
{
#if MODE_SYSTEMID_ENABLED == ENABLED
struct log_SysIdD pkt_sidd = {
LOG_PACKET_HEADER_INIT(LOG_SYSIDD_MSG),
time_us : AP_HAL::micros64(),
waveform_time : waveform_time,
waveform_sample : waveform_sample,
waveform_freq : waveform_freq,
angle_x : angle_x,
angle_y : angle_y,
angle_z : angle_z,
accel_x : accel_x,
accel_y : accel_y,
accel_z : accel_z
};
logger.WriteBlock(&pkt_sidd, sizeof(pkt_sidd));
#endif
}
struct PACKED log_SysIdS {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t systemID_axis;
float waveform_magnitude;
float frequency_start;
float frequency_stop;
float time_fade_in;
float time_const_freq;
float time_record;
float time_fade_out;
};
// Write an rate packet
void Copter::Log_Write_SysID_Setup(uint8_t systemID_axis, float waveform_magnitude, float frequency_start, float frequency_stop, float time_fade_in, float time_const_freq, float time_record, float time_fade_out)
{
#if MODE_SYSTEMID_ENABLED == ENABLED
struct log_SysIdS pkt_sids = {
LOG_PACKET_HEADER_INIT(LOG_SYSIDS_MSG),
time_us : AP_HAL::micros64(),
systemID_axis : systemID_axis,
waveform_magnitude : waveform_magnitude,
frequency_start : frequency_start,
frequency_stop : frequency_stop,
time_fade_in : time_fade_in,
time_const_freq : time_const_freq,
time_record : time_record,
time_fade_out : time_fade_out
};
logger.WriteBlock(&pkt_sids, sizeof(pkt_sids));
#endif
}
#if FRAME_CONFIG == HELI_FRAME
struct PACKED log_Heli {
LOG_PACKET_HEADER;
uint64_t time_us;
float desired_rotor_speed;
float main_rotor_speed;
float governor_output;
float control_output;
};
// Write an helicopter packet
void Copter::Log_Write_Heli()
{
struct log_Heli pkt_heli = {
LOG_PACKET_HEADER_INIT(LOG_HELI_MSG),
time_us : AP_HAL::micros64(),
desired_rotor_speed : motors->get_desired_rotor_speed(),
main_rotor_speed : motors->get_main_rotor_speed(),
governor_output : motors->get_governor_output(),
control_output : motors->get_control_output(),
};
logger.WriteBlock(&pkt_heli, sizeof(pkt_heli));
}
#endif
// precision landing logging
struct PACKED log_Precland {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t healthy;
uint8_t target_acquired;
float pos_x;
float pos_y;
float vel_x;
float vel_y;
float meas_x;
float meas_y;
float meas_z;
uint32_t last_meas;
uint32_t ekf_outcount;
uint8_t estimator;
};
// Write a precision landing entry
void Copter::Log_Write_Precland()
{
#if PRECISION_LANDING == ENABLED
// exit immediately if not enabled
if (!precland.enabled()) {
return;
}
Vector3f target_pos_meas = Vector3f(0.0f,0.0f,0.0f);
Vector2f target_pos_rel = Vector2f(0.0f,0.0f);
Vector2f target_vel_rel = Vector2f(0.0f,0.0f);
precland.get_target_position_relative_cm(target_pos_rel);
precland.get_target_velocity_relative_cms(target_vel_rel);
precland.get_target_position_measurement_cm(target_pos_meas);
struct log_Precland pkt = {
LOG_PACKET_HEADER_INIT(LOG_PRECLAND_MSG),
time_us : AP_HAL::micros64(),
healthy : precland.healthy(),
target_acquired : precland.target_acquired(),
pos_x : target_pos_rel.x,
pos_y : target_pos_rel.y,
vel_x : target_vel_rel.x,
vel_y : target_vel_rel.y,
meas_x : target_pos_meas.x,
meas_y : target_pos_meas.y,
meas_z : target_pos_meas.z,
last_meas : precland.last_backend_los_meas_ms(),
ekf_outcount : precland.ekf_outlier_count(),
estimator : precland.estimator_type()
};
logger.WriteBlock(&pkt, sizeof(pkt));
#endif // PRECISION_LANDING == ENABLED
}
// guided target logging
struct PACKED log_GuidedTarget {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t type;
float pos_target_x;
float pos_target_y;
float pos_target_z;
float vel_target_x;
float vel_target_y;
float vel_target_z;
};
// Write a Guided mode target
// pos_target is lat, lon, alt OR offset from ekf origin in cm OR roll, pitch, yaw target in centi-degrees
// vel_target is cm/s
void Copter::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target)
{
struct log_GuidedTarget pkt = {
LOG_PACKET_HEADER_INIT(LOG_GUIDEDTARGET_MSG),
time_us : AP_HAL::micros64(),
type : target_type,
pos_target_x : pos_target.x,
pos_target_y : pos_target.y,
pos_target_z : pos_target.z,
vel_target_x : vel_target.x,
vel_target_y : vel_target.y,
vel_target_z : vel_target.z
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
// type and unit information can be found in
// libraries/AP_Logger/Logstructure.h; search for "log_Units" for
// units and "Format characters" for field type information
const struct LogStructure Copter::log_structure[] = {
LOG_COMMON_STRUCTURES,
// @LoggerMessage: PTUN
// @Description: Parameter Tuning information
// @URL: https://ardupilot.org/copter/docs/tuning.html#in-flight-tuning
// @Field: TimeUS: Time since system startup
// @Field: Param: Parameter being tuned
// @Field: TunVal: Normalized value used inside tuning() function
// @Field: TunMin: Tuning minimum limit
// @Field: TunMax: Tuning maximum limit
{ LOG_PARAMTUNE_MSG, sizeof(log_ParameterTuning),
"PTUN", "QBfff", "TimeUS,Param,TunVal,TunMin,TunMax", "s----", "F----" },
// @LoggerMessage: CTUN
// @Description: Control Tuning information
// @Field: TimeUS: Time since system startup
// @Field: ThI: throttle input
// @Field: ABst: angle boost
// @Field: ThO: throttle output
// @Field: ThH: calculated hover throttle
// @Field: DAlt: desired altitude
// @Field: Alt: achieved altitude
// @Field: BAlt: barometric altitude
// @Field: DSAlt: desired rangefinder altitude
// @Field: SAlt: achieved rangefinder altitude
// @Field: TAlt: terrain altitude
// @Field: DCRt: desired climb rate
// @Field: CRt: climb rate
// @LoggerMessage: D16
// @Description: Generic 16-bit-signed-integer storage
// @Field: TimeUS: Time since system startup
// @Field: Id: Data type identifier
// @Field: Value: Value
// @LoggerMessage: DU16
// @Description: Generic 16-bit-unsigned-integer storage
// @Field: TimeUS: Time since system startup
// @Field: Id: Data type identifier
// @Field: Value: Value
// @LoggerMessage: D32
// @Description: Generic 32-bit-signed-integer storage
// @Field: TimeUS: Time since system startup
// @Field: Id: Data type identifier
// @Field: Value: Value
// @LoggerMessage: DFLT
// @Description: Generic float storage
// @Field: TimeUS: Time since system startup
// @Field: Id: Data type identifier
// @Field: Value: Value
// @LoggerMessage: DU32
// @Description: Generic 32-bit-unsigned-integer storage
// @Field: TimeUS: Time since system startup
// @Field: Id: Data type identifier
// @Field: Value: Value
{ LOG_CONTROL_TUNING_MSG, sizeof(log_Control_Tuning),
"CTUN", "Qffffffefffhh", "TimeUS,ThI,ABst,ThO,ThH,DAlt,Alt,BAlt,DSAlt,SAlt,TAlt,DCRt,CRt", "s----mmmmmmnn", "F----00B000BB" },
// @LoggerMessage: MOTB
// @Description: Battery information
// @Field: TimeUS: Time since system startup
// @Field: LiftMax: Maximum motor compensation gain
// @Field: BatVolt: Ratio betwen detected battery voltage and maximum battery voltage
// @Field: BatRes: Estimated battery resistance
// @Field: ThLimit: Throttle limit set due to battery current limitations
{ LOG_MOTBATT_MSG, sizeof(log_MotBatt),
"MOTB", "Qffff", "TimeUS,LiftMax,BatVolt,BatRes,ThLimit", "s-vw-", "F-00-" },
{ LOG_DATA_INT16_MSG, sizeof(log_Data_Int16t),
"D16", "QBh", "TimeUS,Id,Value", "s--", "F--" },
{ LOG_DATA_UINT16_MSG, sizeof(log_Data_UInt16t),
"DU16", "QBH", "TimeUS,Id,Value", "s--", "F--" },
{ LOG_DATA_INT32_MSG, sizeof(log_Data_Int32t),
"D32", "QBi", "TimeUS,Id,Value", "s--", "F--" },
{ LOG_DATA_UINT32_MSG, sizeof(log_Data_UInt32t),
"DU32", "QBI", "TimeUS,Id,Value", "s--", "F--" },
{ LOG_DATA_FLOAT_MSG, sizeof(log_Data_Float),
"DFLT", "QBf", "TimeUS,Id,Value", "s--", "F--" },
// @LoggerMessage: HELI
// @Description: Helicopter related messages
// @Field: TimeUS: Time since system startup
// @Field: DRRPM: Desired rotor speed
// @Field: ERRPM: Estimated rotor speed
// @Field: Gov: Governor Output
// @Field: Throt: Throttle output
#if FRAME_CONFIG == HELI_FRAME
{ LOG_HELI_MSG, sizeof(log_Heli),
"HELI", "Qffff", "TimeUS,DRRPM,ERRPM,Gov,Throt", "s----", "F----" },
#endif
// @LoggerMessage: PL
// @Description: Precision Landing messages
// @Field: TimeUS: Time since system startup
// @Field: Heal: True if Precision Landing is healthy
// @Field: TAcq: True if landing target is detected
// @Field: pX: Target position relative to vehicle, X-Axis (0 if target not found)
// @Field: pY: Target position relative to vehicle, Y-Axis (0 if target not found)
// @Field: vX: Target velocity relative to vehicle, X-Axis (0 if target not found)
// @Field: vY: Target velocity relative to vehicle, Y-Axis (0 if target not found)
// @Field: mX: Target's relative to origin postion as 3-D Vector, X-Axis
// @Field: mY: Target's relative to origin postion as 3-D Vector, Y-Axis
// @Field: mZ: Target's relative to origin postion as 3-D Vector, Z-Axis
// @Field: LastMeasUS: Time when target was last detected
// @Field: EKFOutl: EKF's outlier count
// @Field: Est: Type of estimator used
#if PRECISION_LANDING == ENABLED
{ LOG_PRECLAND_MSG, sizeof(log_Precland),
"PL", "QBBfffffffIIB", "TimeUS,Heal,TAcq,pX,pY,vX,vY,mX,mY,mZ,LastMeasUS,EKFOutl,Est", "s--ddmmddms--","F--00BB00BC--" },
#endif
// @LoggerMessage: SIDD
// @Description: System ID data
// @Field: TimeUS: Time since system startup
// @Field: Time: Time reference for waveform
// @Field: Targ: Current waveform sample
// @Field: F: Instantaneous waveform frequency
// @Field: Gx: Delta angle, X-Axis
// @Field: Gy: Delta angle, Y-Axis
// @Field: Gz: Delta angle, Z-Axis
// @Field: Ax: Delta velocity, X-Axis
// @Field: Ay: Delta velocity, Y-Axis
// @Field: Az: Delta velocity, Z-Axis
{ LOG_SYSIDD_MSG, sizeof(log_SysIdD),
"SIDD", "Qfffffffff", "TimeUS,Time,Targ,F,Gx,Gy,Gz,Ax,Ay,Az", "ss-zkkkooo", "F---------" },
// @LoggerMessage: SIDS
// @Description: System ID settings
// @Field: TimeUS: Time since system startup
// @Field: Ax: The axis which is being excited
// @Field: Mag: Magnitude of the chirp waveform
// @Field: FSt: Frequency at the start of chirp
// @Field: FSp: Frequency at the end of chirp
// @Field: TFin: Time to reach maximum amplitude of chirp
// @Field: TC: Time at constant frequency before chirp starts
// @Field: TR: Time taken to complete chirp waveform
// @Field: TFout: Time to reach zero amplitude after chirp finishes
{ LOG_SYSIDS_MSG, sizeof(log_SysIdS),
"SIDS", "QBfffffff", "TimeUS,Ax,Mag,FSt,FSp,TFin,TC,TR,TFout", "s--ssssss", "F--------" },
// @LoggerMessage: GUID
// @Description: Guided mode target information
// @Field: TimeUS: Time since system startup
// @Field: Type: Type of guided mode
// @Field: pX: Target position, X-Axis
// @Field: pY: Target position, Y-Axis
// @Field: pZ: Target position, Z-Axis
// @Field: vX: Target velocity, X-Axis
// @Field: vY: Target velocity, Y-Axis
// @Field: vZ: Target velocity, Z-Axis
{ LOG_GUIDEDTARGET_MSG, sizeof(log_GuidedTarget),
"GUID", "QBffffff", "TimeUS,Type,pX,pY,pZ,vX,vY,vZ", "s-mmmnnn", "F-BBBBBB" },
};
void Copter::Log_Write_Vehicle_Startup_Messages()
{
// only 200(?) bytes are guaranteed by AP_Logger
logger.Write_MessageF("Frame: %s", get_frame_string());
logger.Write_Mode((uint8_t)control_mode, control_mode_reason);
ahrs.Log_Write_Home_And_Origin();
gps.Write_AP_Logger_Log_Startup_messages();
}
void Copter::log_init(void)
{
logger.Init(log_structure, ARRAY_SIZE(log_structure));
}
#else // LOGGING_ENABLED
void Copter::Log_Write_Control_Tuning() {}
void Copter::Log_Write_Performance() {}
void Copter::Log_Write_Attitude(void) {}
void Copter::Log_Write_EKF_POS() {}
void Copter::Log_Write_MotBatt() {}
void Copter::Log_Write_Data(LogDataID id, int32_t value) {}
void Copter::Log_Write_Data(LogDataID id, uint32_t value) {}
void Copter::Log_Write_Data(LogDataID id, int16_t value) {}
void Copter::Log_Write_Data(LogDataID id, uint16_t value) {}
void Copter::Log_Write_Data(LogDataID id, float value) {}
void Copter::Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, float tune_min, float tune_max) {}
void Copter::Log_Sensor_Health() {}
void Copter::Log_Write_Precland() {}
void Copter::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) {}
void Copter::Log_Write_SysID_Setup(uint8_t systemID_axis, float waveform_magnitude, float frequency_start, float frequency_stop, float time_fade_in, float time_const_freq, float time_record, float time_fade_out) {}
void Copter::Log_Write_SysID_Data(float waveform_time, float waveform_sample, float waveform_freq, float angle_x, float angle_y, float angle_z, float accel_x, float accel_y, float accel_z) {}
void Copter::Log_Write_Vehicle_Startup_Messages() {}
#if FRAME_CONFIG == HELI_FRAME
void Copter::Log_Write_Heli() {}
#endif
void Copter::log_init(void) {}
#endif // LOGGING_ENABLED