5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-18 14:48:28 -04:00
ardupilot/libraries/AP_SBusOut/AP_SBusOut.cpp
2019-03-26 10:27:54 +11:00

192 lines
5.7 KiB
C++

/*
* AP_SBusOut.cpp
*
* Created on: Aug 19, 2017
* Author: Mark Whitehorn
*
* method sbus1_out was ported from ardupilot/modules/PX4Firmware/src/lib/rc/sbus.c
* which has the following license:
*
* Copyright (c) 2012-2014 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "AP_SBusOut.h"
#include <AP_Math/AP_Math.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <SRV_Channel/SRV_Channel.h>
extern const AP_HAL::HAL& hal;
#define SBUS_DEBUG 0
// SBUS1 constant definitions
// pulse widths measured using FrSky Sbus/PWM converter
#define SBUS_BSIZE 25
#define SBUS_CHANNELS 16
#define SBUS_MIN 880.0f
#define SBUS_MAX 2156.0f
#define SBUS_SCALE (2048.0f / (SBUS_MAX - SBUS_MIN))
const AP_Param::GroupInfo AP_SBusOut::var_info[] = {
// @Param: RATE
// @DisplayName: SBUS default output rate
// @Description: This sets the SBUS output frame rate in Hz.
// @Range: 25 250
// @User: Advanced
// @Units: Hz
AP_GROUPINFO("RATE", 1, AP_SBusOut, sbus_rate, 50),
AP_GROUPEND
};
// constructor
AP_SBusOut::AP_SBusOut(void)
{
// set defaults from the parameter table
AP_Param::setup_object_defaults(this, var_info);
}
/*
format a SBUS output frame into a 25 byte buffer
*/
void AP_SBusOut::sbus_format_frame(uint16_t *channels, uint8_t num_channels, uint8_t buffer[SBUS_BSIZE])
{
uint8_t index = 1;
uint8_t offset = 0;
memset(buffer, 0, SBUS_BSIZE);
buffer[0] = 0x0f;
/* construct sbus frame representing channels 1 through 16 (max) */
uint8_t nchan = MIN(num_channels, SBUS_CHANNELS);
for (unsigned i = 0; i < nchan; ++i) {
/*protect from out of bounds values and limit to 11 bits*/
uint16_t pwmval = MAX(channels[i], SBUS_MIN);
uint16_t value = (uint16_t)((pwmval - SBUS_MIN) * SBUS_SCALE);
if (value > 0x07ff) {
value = 0x07ff;
}
#if SBUS_DEBUG
static uint16_t lastch9 = 0;
if ((i==8) && (pwmval != lastch9)) {
lastch9 = pwmval;
hal.console->printf("channel 9 pwm: %04d\n", pwmval);
}
#endif
while (offset >= 8) {
++index;
offset -= 8;
}
buffer[index] |= (value << (offset)) & 0xff;
buffer[index + 1] |= (value >> (8 - offset)) & 0xff;
buffer[index + 2] |= (value >> (16 - offset)) & 0xff;
offset += 11;
}
}
/*
* build and send sbus1 frame representing first 16 servo channels
* input arg is pointer to uart
*/
void
AP_SBusOut::update()
{
if (!initialised) {
initialised = true;
init();
}
if (sbus1_uart == nullptr) {
return;
}
// constrain output rate using sbus_frame_interval
static uint32_t last_micros = 0;
uint32_t now = AP_HAL::micros();
if ((now - last_micros) <= sbus_frame_interval) {
return;
}
last_micros = now;
/* construct sbus frame representing channels 1 through 16 (max) */
uint8_t nchan = MIN(NUM_SERVO_CHANNELS, SBUS_CHANNELS);
uint16_t channels[SBUS_CHANNELS] {};
for (unsigned i = 0; i < nchan; ++i) {
SRV_Channel *c = SRV_Channels::srv_channel(i);
if (c == nullptr) {
continue;
}
channels[i] = c->get_output_pwm();
}
uint8_t buffer[SBUS_BSIZE];
sbus_format_frame(channels, nchan, buffer);
#if SBUS_DEBUG
hal.gpio->pinMode(55, HAL_GPIO_OUTPUT);
hal.gpio->write(55, 1);
#endif
sbus1_uart->write(buffer, sizeof(buffer));
#if SBUS_DEBUG
hal.gpio->pinMode(55, HAL_GPIO_OUTPUT);
hal.gpio->write(55, 0);
#endif
}
void AP_SBusOut::init() {
uint16_t rate = sbus_rate.get();
#if SBUS_DEBUG
hal.console->printf("AP_SBusOut: init %d Hz\n", rate);
#endif
// subtract 500usec from requested frame interval to allow for latency
sbus_frame_interval = (1000UL * 1000UL) / rate - 500;
// at 100,000 bps, a 300 bit sbus frame takes 3msec to transfer
// require a minimum 700usec interframe gap
if (sbus_frame_interval < 3700) {
sbus_frame_interval = 3700;
}
AP_SerialManager *serial_manager = AP_SerialManager::get_singleton();
if (!serial_manager) {
return;
}
sbus1_uart = serial_manager->find_serial(AP_SerialManager::SerialProtocol_Sbus1,0);
}