ardupilot/libraries/AC_WPNav/AC_WPNav.cpp
2013-12-11 10:21:41 +11:00

772 lines
29 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include <AC_WPNav.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = {
// index 0 was used for the old orientation matrix
// @Param: SPEED
// @DisplayName: Waypoint Horizontal Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain horizontally during a WP mission
// @Units: cm/s
// @Range: 0 2000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("SPEED", 0, AC_WPNav, _wp_speed_cms, WPNAV_WP_SPEED),
// @Param: RADIUS
// @DisplayName: Waypoint Radius
// @Description: Defines the distance from a waypoint, that when crossed indicates the wp has been hit.
// @Units: cm
// @Range: 100 1000
// @Increment: 1
// @User: Standard
AP_GROUPINFO("RADIUS", 1, AC_WPNav, _wp_radius_cm, WPNAV_WP_RADIUS),
// @Param: SPEED_UP
// @DisplayName: Waypoint Climb Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while climbing during a WP mission
// @Units: cm/s
// @Range: 0 1000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("SPEED_UP", 2, AC_WPNav, _wp_speed_up_cms, WPNAV_WP_SPEED_UP),
// @Param: SPEED_DN
// @DisplayName: Waypoint Descent Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while descending during a WP mission
// @Units: cm/s
// @Range: 0 1000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("SPEED_DN", 3, AC_WPNav, _wp_speed_down_cms, WPNAV_WP_SPEED_DOWN),
// @Param: LOIT_SPEED
// @DisplayName: Loiter Horizontal Maximum Speed
// @Description: Defines the maximum speed in cm/s which the aircraft will travel horizontally while in loiter mode
// @Units: cm/s
// @Range: 0 2000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("LOIT_SPEED", 4, AC_WPNav, _loiter_speed_cms, WPNAV_LOITER_SPEED),
// @Param: ACCEL
// @DisplayName: Waypoint Acceleration
// @Description: Defines the horizontal acceleration in cm/s/s used during missions
// @Units: cm/s/s
// @Range: 0 980
// @Increment: 10
// @User: Standard
AP_GROUPINFO("ACCEL", 5, AC_WPNav, _wp_accel_cms, WPNAV_ACCELERATION),
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
AC_WPNav::AC_WPNav(const AP_InertialNav* inav, const AP_AHRS* ahrs, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_rate_lat, AC_PID* pid_rate_lon) :
_inav(inav),
_ahrs(ahrs),
_pid_pos_lat(pid_pos_lat),
_pid_pos_lon(pid_pos_lon),
_pid_rate_lat(pid_rate_lat),
_pid_rate_lon(pid_rate_lon),
_loiter_last_update(0),
_wpnav_last_update(0),
_cos_yaw(1.0),
_sin_yaw(0.0),
_cos_pitch(1.0),
_althold_kP(WPNAV_ALT_HOLD_P),
_desired_roll(0),
_desired_pitch(0),
_target(0,0,0),
_pilot_vel_forward_cms(0),
_pilot_vel_right_cms(0),
_target_vel(0,0,0),
_vel_last(0,0,0),
_loiter_leash(WPNAV_MIN_LEASH_LENGTH),
_loiter_accel_cms(WPNAV_LOITER_ACCEL_MAX),
_lean_angle_max_cd(MAX_LEAN_ANGLE),
_wp_leash_xy(WPNAV_MIN_LEASH_LENGTH),
_wp_leash_z(WPNAV_MIN_LEASH_LENGTH),
_track_accel(0),
_track_speed(0),
_track_leash_length(0),
dist_error(0,0),
desired_vel(0,0),
desired_accel(0,0)
{
AP_Param::setup_object_defaults(this, var_info);
// calculate loiter leash
calculate_loiter_leash_length();
}
///
/// simple loiter controller
///
/// get_stopping_point - returns vector to stopping point based on a horizontal position and velocity
void AC_WPNav::get_stopping_point(const Vector3f& position, const Vector3f& velocity, Vector3f &target) const
{
float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt.
float linear_velocity; // the velocity we swap between linear and sqrt.
float vel_total;
float target_dist;
float kP = _pid_pos_lat->kP();
// calculate current velocity
vel_total = safe_sqrt(velocity.x*velocity.x + velocity.y*velocity.y);
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
if (vel_total < 10.0f || kP <= 0.0f || _wp_accel_cms <= 0.0f) {
target = position;
return;
}
// calculate point at which velocity switches from linear to sqrt
linear_velocity = _wp_accel_cms/kP;
// calculate distance within which we can stop
if (vel_total < linear_velocity) {
target_dist = vel_total/kP;
} else {
linear_distance = _wp_accel_cms/(2.0f*kP*kP);
target_dist = linear_distance + (vel_total*vel_total)/(2.0f*_wp_accel_cms);
}
target_dist = constrain_float(target_dist, 0, _wp_leash_xy*2.0f);
target.x = position.x + (target_dist * velocity.x / vel_total);
target.y = position.y + (target_dist * velocity.y / vel_total);
target.z = position.z;
}
/// set_loiter_target in cm from home
void AC_WPNav::set_loiter_target(const Vector3f& position)
{
_target = position;
_target_vel.x = 0;
_target_vel.y = 0;
}
/// init_loiter_target - set initial loiter target based on current position and velocity
void AC_WPNav::init_loiter_target(const Vector3f& position, const Vector3f& velocity)
{
// set target position and velocity based on current pos and velocity
_target.x = position.x;
_target.y = position.y;
_target_vel.x = velocity.x;
_target_vel.y = velocity.y;
// initialise desired roll and pitch to current roll and pitch. This avoids a random twitch between now and when the loiter controller is first run
_desired_roll = constrain_int32(_ahrs->roll_sensor,-_lean_angle_max_cd,_lean_angle_max_cd);
_desired_pitch = constrain_int32(_ahrs->pitch_sensor,-_lean_angle_max_cd,_lean_angle_max_cd);
// initialise pilot input
_pilot_vel_forward_cms = 0;
_pilot_vel_right_cms = 0;
// set last velocity to current velocity
// To-Do: remove the line below by instead forcing reset_I to be called on the first loiter_update call
_vel_last = _inav->get_velocity();
}
/// move_loiter_target - move loiter target by velocity provided in front/right directions in cm/s
void AC_WPNav::move_loiter_target(float control_roll, float control_pitch, float dt)
{
// convert pilot input to desired velocity in cm/s
_pilot_vel_forward_cms = -control_pitch * _loiter_accel_cms / 4500.0f;
_pilot_vel_right_cms = control_roll * _loiter_accel_cms / 4500.0f;
}
/// translate_loiter_target_movements - consumes adjustments created by move_loiter_target
void AC_WPNav::translate_loiter_target_movements(float nav_dt)
{
Vector2f target_vel_adj;
float vel_total;
// range check nav_dt
if( nav_dt < 0 ) {
return;
}
// check loiter speed and avoid divide by zero
if( _loiter_speed_cms < 100.0f) {
_loiter_speed_cms = 100.0f;
}
// rotate pilot input to lat/lon frame
target_vel_adj.x = (_pilot_vel_forward_cms*_cos_yaw - _pilot_vel_right_cms*_sin_yaw);
target_vel_adj.y = (_pilot_vel_forward_cms*_sin_yaw + _pilot_vel_right_cms*_cos_yaw);
// add desired change in velocity to current target velocit
_target_vel.x += target_vel_adj.x*nav_dt;
_target_vel.y += target_vel_adj.y*nav_dt;
if(_target_vel.x > 0 ) {
_target_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.x/_loiter_speed_cms;
_target_vel.x = max(_target_vel.x - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0);
}else if(_target_vel.x < 0) {
_target_vel.x -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.x/_loiter_speed_cms;
_target_vel.x = min(_target_vel.x + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0);
}
if(_target_vel.y > 0 ) {
_target_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.y/_loiter_speed_cms;
_target_vel.y = max(_target_vel.y - WPNAV_LOITER_ACCEL_MIN*nav_dt, 0);
}else if(_target_vel.y < 0) {
_target_vel.y -= (_loiter_accel_cms-WPNAV_LOITER_ACCEL_MIN)*nav_dt*_target_vel.y/_loiter_speed_cms;
_target_vel.y = min(_target_vel.y + WPNAV_LOITER_ACCEL_MIN*nav_dt, 0);
}
// constrain the velocity vector and scale if necessary
vel_total = safe_sqrt(_target_vel.x*_target_vel.x + _target_vel.y*_target_vel.y);
if (vel_total > _loiter_speed_cms && vel_total > 0.0f) {
_target_vel.x = _loiter_speed_cms * _target_vel.x/vel_total;
_target_vel.y = _loiter_speed_cms * _target_vel.y/vel_total;
}
// update target position
_target.x += _target_vel.x * nav_dt;
_target.y += _target_vel.y * nav_dt;
// constrain target position to within reasonable distance of current location
Vector3f curr_pos = _inav->get_position();
Vector3f distance_err = _target - curr_pos;
float distance = safe_sqrt(distance_err.x*distance_err.x + distance_err.y*distance_err.y);
if (distance > _loiter_leash && distance > 0.0f) {
_target.x = curr_pos.x + _loiter_leash * distance_err.x/distance;
_target.y = curr_pos.y + _loiter_leash * distance_err.y/distance;
}
}
/// get_distance_to_target - get horizontal distance to loiter target in cm
float AC_WPNav::get_distance_to_target() const
{
return _distance_to_target;
}
/// get_bearing_to_target - get bearing to loiter target in centi-degrees
int32_t AC_WPNav::get_bearing_to_target() const
{
return get_bearing_cd(_inav->get_position(), _target);
}
/// update_loiter - run the loiter controller - should be called at 10hz
void AC_WPNav::update_loiter()
{
// calculate dt
uint32_t now = hal.scheduler->millis();
float dt = (now - _loiter_last_update) / 1000.0f;
// catch if we've just been started
if( dt >= 1.0f ) {
dt = 0.0f;
reset_I();
_loiter_step = 0;
}
// reset step back to 0 if 0.1 seconds has passed and we completed the last full cycle
if (dt > 0.095f && _loiter_step > 3) {
_loiter_step = 0;
}
// run loiter steps
switch (_loiter_step) {
case 0:
// capture time since last iteration
_loiter_dt = dt;
_loiter_last_update = now;
// translate any adjustments from pilot to loiter target
translate_loiter_target_movements(_loiter_dt);
_loiter_step++;
break;
case 1:
// run loiter's position to velocity step
get_loiter_position_to_velocity(_loiter_dt, WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR);
_loiter_step++;
break;
case 2:
// run loiter's velocity to acceleration step
get_loiter_velocity_to_acceleration(desired_vel.x, desired_vel.y, _loiter_dt);
_loiter_step++;
break;
case 3:
// run loiter's acceleration to lean angle step
get_loiter_acceleration_to_lean_angles(desired_accel.x, desired_accel.y);
_loiter_step++;
break;
}
}
/// calculate_loiter_leash_length - calculates the maximum distance in cm that the target position may be from the current location
void AC_WPNav::calculate_loiter_leash_length()
{
// get loiter position P
float kP = _pid_pos_lat->kP();
// check loiter speed
if( _loiter_speed_cms < 100.0f) {
_loiter_speed_cms = 100.0f;
}
// set loiter acceleration to 1/2 loiter speed
_loiter_accel_cms = _loiter_speed_cms / 2.0f;
// avoid divide by zero
if (kP <= 0.0f || _wp_accel_cms <= 0.0f) {
_loiter_leash = WPNAV_MIN_LEASH_LENGTH;
return;
}
// calculate horizontal leash length
if(WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR <= _wp_accel_cms / kP) {
// linear leash length based on speed close in
_loiter_leash = WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / kP;
}else{
// leash length grows at sqrt of speed further out
_loiter_leash = (_wp_accel_cms / (2.0f*kP*kP)) + (WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR*WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / (2.0f*_wp_accel_cms));
}
// ensure leash is at least 1m long
if( _loiter_leash < WPNAV_MIN_LEASH_LENGTH ) {
_loiter_leash = WPNAV_MIN_LEASH_LENGTH;
}
}
///
/// waypoint navigation
///
/// set_destination - set destination using cm from home
void AC_WPNav::set_destination(const Vector3f& destination)
{
// if waypoint controlls is active and copter has reached the previous waypoint use it for the origin
if( _flags.reached_destination && ((hal.scheduler->millis() - _wpnav_last_update) < 1000) ) {
_origin = _destination;
}else{
// otherwise calculate origin from the current position and velocity
get_stopping_point(_inav->get_position(), _inav->get_velocity(), _origin);
}
// set origin and destination
set_origin_and_destination(_origin, destination);
}
/// set_origin_and_destination - set origin and destination using lat/lon coordinates
void AC_WPNav::set_origin_and_destination(const Vector3f& origin, const Vector3f& destination)
{
// store origin and destination locations
_origin = origin;
_destination = destination;
Vector3f pos_delta = _destination - _origin;
// calculate leash lengths
bool climb = pos_delta.z >= 0; // climbing vs descending leads to different leash lengths because speed_up_cms and speed_down_cms can be different
_track_length = pos_delta.length(); // get track length
// calculate each axis' percentage of the total distance to the destination
if (_track_length == 0.0f) {
// avoid possible divide by zero
_pos_delta_unit.x = 0;
_pos_delta_unit.y = 0;
_pos_delta_unit.z = 0;
}else{
_pos_delta_unit = pos_delta/_track_length;
}
calculate_wp_leash_length(climb); // update leash lengths
// initialise intermediate point to the origin
_track_desired = 0;
_target = origin;
_flags.reached_destination = false;
// initialise the limited speed to current speed along the track
const Vector3f &curr_vel = _inav->get_velocity();
// get speed along track (note: we convert vertical speed into horizontal speed equivalent)
float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z;
_limited_speed_xy_cms = constrain_float(speed_along_track,0,_wp_speed_cms);
// default waypoint back to slow
_flags.fast_waypoint = false;
// initialise desired roll and pitch to current roll and pitch. This avoids a random twitch between now and when the wpnav controller is first run
_desired_roll = constrain_int32(_ahrs->roll_sensor,-_lean_angle_max_cd,_lean_angle_max_cd);
_desired_pitch = constrain_int32(_ahrs->pitch_sensor,-_lean_angle_max_cd,_lean_angle_max_cd);
// reset target velocity - only used by loiter controller's interpretation of pilot input
_target_vel.x = 0;
_target_vel.y = 0;
}
/// advance_target_along_track - move target location along track from origin to destination
void AC_WPNav::advance_target_along_track(float dt)
{
float track_covered;
Vector3f track_error;
float track_desired_max;
float track_desired_temp = _track_desired;
float track_extra_max;
// get current location
Vector3f curr_pos = _inav->get_position();
Vector3f curr_delta = curr_pos - _origin;
// calculate how far along the track we are
track_covered = curr_delta.x * _pos_delta_unit.x + curr_delta.y * _pos_delta_unit.y + curr_delta.z * _pos_delta_unit.z;
Vector3f track_covered_pos = _pos_delta_unit * track_covered;
track_error = curr_delta - track_covered_pos;
// calculate the horizontal error
float track_error_xy = safe_sqrt(track_error.x*track_error.x + track_error.y*track_error.y);
// calculate the vertical error
float track_error_z = fabsf(track_error.z);
// calculate how far along the track we could move the intermediate target before reaching the end of the leash
track_extra_max = min(_track_leash_length*(_wp_leash_z-track_error_z)/_wp_leash_z, _track_leash_length*(_wp_leash_xy-track_error_xy)/_wp_leash_xy);
if(track_extra_max <0) {
track_desired_max = track_covered;
}else{
track_desired_max = track_covered + track_extra_max;
}
// get current velocity
const Vector3f &curr_vel = _inav->get_velocity();
// get speed along track
float speed_along_track = curr_vel.x * _pos_delta_unit.x + curr_vel.y * _pos_delta_unit.y + curr_vel.z * _pos_delta_unit.z;
// calculate point at which velocity switches from linear to sqrt
float linear_velocity = _wp_speed_cms;
float kP = _pid_pos_lat->kP();
if (kP >= 0.0f) { // avoid divide by zero
linear_velocity = _track_accel/kP;
}
// let the limited_speed_xy_cms be some range above or below current velocity along track
if (speed_along_track < -linear_velocity) {
// we are travelling fast in the opposite direction of travel to the waypoint so do not move the intermediate point
_limited_speed_xy_cms = 0;
}else{
// increase intermediate target point's velocity if not yet at target speed (we will limit it below)
if(dt > 0) {
if(track_desired_max > _track_desired) {
_limited_speed_xy_cms += 2.0f * _track_accel * dt;
}else{
// do nothing, velocity stays constant
_track_desired = track_desired_max;
}
}
// do not go over top speed
if(_limited_speed_xy_cms > _track_speed) {
_limited_speed_xy_cms = _track_speed;
}
// if our current velocity is within the linear velocity range limit the intermediate point's velocity to be no more than the linear_velocity above or below our current velocity
if (fabsf(speed_along_track) < linear_velocity) {
_limited_speed_xy_cms = constrain_float(_limited_speed_xy_cms,speed_along_track-linear_velocity,speed_along_track+linear_velocity);
}
}
// advance the current target
track_desired_temp += _limited_speed_xy_cms * dt;
// do not let desired point go past the end of the segment
track_desired_temp = constrain_float(track_desired_temp, 0, _track_length);
_track_desired = max(_track_desired, track_desired_temp);
// recalculate the desired position
_target = _origin + _pos_delta_unit * _track_desired;
// check if we've reached the waypoint
if( !_flags.reached_destination ) {
if( _track_desired >= _track_length ) {
// "fast" waypoints are complete once the intermediate point reaches the destination
if (_flags.fast_waypoint) {
_flags.reached_destination = true;
}else{
// regular waypoints also require the copter to be within the waypoint radius
Vector3f dist_to_dest = curr_pos - _destination;
if( dist_to_dest.length() <= _wp_radius_cm ) {
_flags.reached_destination = true;
}
}
}
}
}
/// get_distance_to_destination - get horizontal distance to destination in cm
float AC_WPNav::get_distance_to_destination()
{
// get current location
Vector3f curr = _inav->get_position();
return pythagorous2(_destination.x-curr.x,_destination.y-curr.y);
}
/// get_bearing_to_destination - get bearing to next waypoint in centi-degrees
int32_t AC_WPNav::get_bearing_to_destination()
{
return get_bearing_cd(_inav->get_position(), _destination);
}
/// update_wpnav - run the wp controller - should be called at 10hz
void AC_WPNav::update_wpnav()
{
// calculate dt
uint32_t now = hal.scheduler->millis();
float dt = (now - _wpnav_last_update) / 1000.0f;
// catch if we've just been started
if( dt >= 1.0f ) {
dt = 0.0;
reset_I();
_wpnav_step = 0;
}
// reset step back to 0 if 0.1 seconds has passed and we completed the last full cycle
if (dt > 0.095f && _wpnav_step > 3) {
_wpnav_step = 0;
}
// run loiter steps
switch (_wpnav_step) {
case 0:
// capture time since last iteration
_wpnav_dt = dt;
_wpnav_last_update = now;
// advance the target if necessary
if (dt > 0.0f) {
advance_target_along_track(dt);
}
_wpnav_step++;
break;
case 1:
// run loiter's position to velocity step
get_loiter_position_to_velocity(_wpnav_dt, _wp_speed_cms);
_wpnav_step++;
break;
case 2:
// run loiter's velocity to acceleration step
get_loiter_velocity_to_acceleration(desired_vel.x, desired_vel.y, _wpnav_dt);
_wpnav_step++;
break;
case 3:
// run loiter's acceleration to lean angle step
get_loiter_acceleration_to_lean_angles(desired_accel.x, desired_accel.y);
_wpnav_step++;
break;
}
}
///
/// shared methods
///
/// get_loiter_position_to_velocity - loiter position controller
/// converts desired position held in _target vector to desired velocity
void AC_WPNav::get_loiter_position_to_velocity(float dt, float max_speed_cms)
{
Vector3f curr = _inav->get_position();
float dist_error_total;
float vel_sqrt;
float vel_total;
float linear_distance; // the distace we swap between linear and sqrt.
float kP = _pid_pos_lat->kP();
// avoid divide by zero
if (kP <= 0.0f) {
desired_vel.x = 0.0;
desired_vel.y = 0.0;
}else{
// calculate distance error
dist_error.x = _target.x - curr.x;
dist_error.y = _target.y - curr.y;
linear_distance = _wp_accel_cms/(2.0f*kP*kP);
dist_error_total = safe_sqrt(dist_error.x*dist_error.x + dist_error.y*dist_error.y);
_distance_to_target = dist_error_total; // for reporting purposes
if( dist_error_total > 2.0f*linear_distance ) {
vel_sqrt = safe_sqrt(2.0f*_wp_accel_cms*(dist_error_total-linear_distance));
desired_vel.x = vel_sqrt * dist_error.x/dist_error_total;
desired_vel.y = vel_sqrt * dist_error.y/dist_error_total;
}else{
desired_vel.x = _pid_pos_lat->kP() * dist_error.x;
desired_vel.y = _pid_pos_lon->kP() * dist_error.y;
}
// ensure velocity stays within limits
vel_total = safe_sqrt(desired_vel.x*desired_vel.x + desired_vel.y*desired_vel.y);
if( vel_total > max_speed_cms ) {
desired_vel.x = max_speed_cms * desired_vel.x/vel_total;
desired_vel.y = max_speed_cms * desired_vel.y/vel_total;
}
// feed forward velocity request
desired_vel.x += _target_vel.x;
desired_vel.y += _target_vel.y;
}
}
/// get_loiter_velocity_to_acceleration - loiter velocity controller
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
void AC_WPNav::get_loiter_velocity_to_acceleration(float vel_lat, float vel_lon, float dt)
{
const Vector3f &vel_curr = _inav->get_velocity(); // current velocity in cm/s
Vector3f vel_error; // The velocity error in cm/s.
float accel_total; // total acceleration in cm/s/s
// reset last velocity if this controller has just been engaged or dt is zero
if( dt == 0.0f ) {
desired_accel.x = 0;
desired_accel.y = 0;
} else {
// feed forward desired acceleration calculation
desired_accel.x = (vel_lat - _vel_last.x)/dt;
desired_accel.y = (vel_lon - _vel_last.y)/dt;
}
// store this iteration's velocities for the next iteration
_vel_last.x = vel_lat;
_vel_last.y = vel_lon;
// calculate velocity error
vel_error.x = vel_lat - vel_curr.x;
vel_error.y = vel_lon - vel_curr.y;
// combine feed foward accel with PID outpu from velocity error
desired_accel.x += _pid_rate_lat->get_pid(vel_error.x, dt);
desired_accel.y += _pid_rate_lon->get_pid(vel_error.y, dt);
// scale desired acceleration if it's beyond acceptable limit
accel_total = safe_sqrt(desired_accel.x*desired_accel.x + desired_accel.y*desired_accel.y);
if( accel_total > WPNAV_ACCEL_MAX ) {
desired_accel.x = WPNAV_ACCEL_MAX * desired_accel.x/accel_total;
desired_accel.y = WPNAV_ACCEL_MAX * desired_accel.y/accel_total;
}
}
/// get_loiter_acceleration_to_lean_angles - loiter acceleration controller
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
void AC_WPNav::get_loiter_acceleration_to_lean_angles(float accel_lat, float accel_lon)
{
float z_accel_meas = -GRAVITY_MSS * 100; // gravity in cm/s/s
float accel_forward;
float accel_right;
// To-Do: add 1hz filter to accel_lat, accel_lon
// rotate accelerations into body forward-right frame
accel_forward = accel_lat*_cos_yaw + accel_lon*_sin_yaw;
accel_right = -accel_lat*_sin_yaw + accel_lon*_cos_yaw;
// update angle targets that will be passed to stabilize controller
_desired_roll = constrain_float(fast_atan(accel_right*_cos_pitch/(-z_accel_meas))*(18000/M_PI_F), -_lean_angle_max_cd, _lean_angle_max_cd);
_desired_pitch = constrain_float(fast_atan(-accel_forward/(-z_accel_meas))*(18000/M_PI_F), -_lean_angle_max_cd, _lean_angle_max_cd);
}
// get_bearing_cd - return bearing in centi-degrees between two positions
// To-Do: move this to math library
float AC_WPNav::get_bearing_cd(const Vector3f &origin, const Vector3f &destination) const
{
float bearing = 9000 + atan2f(-(destination.x-origin.x), destination.y-origin.y) * 5729.57795f;
if (bearing < 0) {
bearing += 36000;
}
return bearing;
}
/// reset_I - clears I terms from loiter PID controller
void AC_WPNav::reset_I()
{
_pid_pos_lon->reset_I();
_pid_pos_lat->reset_I();
_pid_rate_lon->reset_I();
_pid_rate_lat->reset_I();
// set last velocity to current velocity
_vel_last = _inav->get_velocity();
}
/// calculate_wp_leash_length - calculates horizontal and vertical leash lengths for waypoint controller
void AC_WPNav::calculate_wp_leash_length(bool climb)
{
// get loiter position P
float kP = _pid_pos_lat->kP();
// sanity check acceleration and avoid divide by zero
if (_wp_accel_cms <= 0.0f) {
_wp_accel_cms = WPNAV_ACCELERATION_MIN;
}
// avoid divide by zero
if (kP <= 0.0f) {
_wp_leash_xy = WPNAV_MIN_LEASH_LENGTH;
return;
}
// calculate horiztonal leash length
if(_wp_speed_cms <= _wp_accel_cms / kP) {
// linear leash length based on speed close in
_wp_leash_xy = _wp_speed_cms / kP;
}else{
// leash length grows at sqrt of speed further out
_wp_leash_xy = (_wp_accel_cms / (2.0f*kP*kP)) + (_wp_speed_cms*_wp_speed_cms / (2.0f*_wp_accel_cms));
}
// ensure leash is at least 1m long
if( _wp_leash_xy < WPNAV_MIN_LEASH_LENGTH ) {
_wp_leash_xy = WPNAV_MIN_LEASH_LENGTH;
}
// calculate vertical leash length
float speed_vert;
if( climb ) {
speed_vert = _wp_speed_up_cms;
}else{
speed_vert = _wp_speed_down_cms;
}
if(speed_vert <= WPNAV_ALT_HOLD_ACCEL_MAX / _althold_kP) {
// linear leash length based on speed close in
_wp_leash_z = speed_vert / _althold_kP;
}else{
// leash length grows at sqrt of speed further out
_wp_leash_z = (WPNAV_ALT_HOLD_ACCEL_MAX / (2.0*_althold_kP*_althold_kP)) + (speed_vert*speed_vert / (2*WPNAV_ALT_HOLD_ACCEL_MAX));
}
// ensure leash is at least 1m long
if( _wp_leash_z < WPNAV_MIN_LEASH_LENGTH ) {
_wp_leash_z = WPNAV_MIN_LEASH_LENGTH;
}
// length of the unit direction vector in the horizontal
float pos_delta_unit_xy = sqrt(_pos_delta_unit.x*_pos_delta_unit.x+_pos_delta_unit.y*_pos_delta_unit.y);
float pos_delta_unit_z = fabsf(_pos_delta_unit.z);
// calculate the maximum acceleration, maximum velocity, and leash length in the direction of travel
if(pos_delta_unit_z == 0 && pos_delta_unit_xy == 0){
_track_accel = 0;
_track_speed = 0;
_track_leash_length = WPNAV_MIN_LEASH_LENGTH;
}else if(_pos_delta_unit.z == 0){
_track_accel = _wp_accel_cms/pos_delta_unit_xy;
_track_speed = _wp_speed_cms/pos_delta_unit_xy;
_track_leash_length = _wp_leash_xy/pos_delta_unit_xy;
}else if(pos_delta_unit_xy == 0){
_track_accel = WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z;
_track_speed = speed_vert/pos_delta_unit_z;
_track_leash_length = _wp_leash_z/pos_delta_unit_z;
}else{
_track_accel = min(WPNAV_ALT_HOLD_ACCEL_MAX/pos_delta_unit_z, _wp_accel_cms/pos_delta_unit_xy);
_track_speed = min(speed_vert/pos_delta_unit_z, _wp_speed_cms/pos_delta_unit_xy);
_track_leash_length = min(_wp_leash_z/pos_delta_unit_z, _wp_leash_xy/pos_delta_unit_xy);
}
}