ardupilot/libraries/AP_Compass/AP_Compass_AK8963.cpp

574 lines
16 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_Compass_AK8963.cpp
* Code by Georgii Staroselskii. Emlid.com
*
* Sensor is connected to SPI port
*
*/
#include <AP_Math.h>
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "AP_Compass_AK8963.h"
#include "../AP_InertialSensor/AP_InertialSensor_MPU9250.h"
#define READ_FLAG 0x80
#define MPUREG_I2C_SLV0_ADDR 0x25
#define MPUREG_I2C_SLV0_REG 0x26
#define MPUREG_I2C_SLV0_CTRL 0x27
#define MPUREG_EXT_SENS_DATA_00 0x49
#define MPUREG_I2C_SLV0_DO 0x63
#define MPUREG_PWR_MGMT_1 0x6B
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
/* bit definitions for MPUREG_USER_CTRL */
#define MPUREG_USER_CTRL 0x6A
# define BIT_USER_CTRL_I2C_MST_EN 0x20 /* Enable MPU to act as the I2C Master to external slave sensors */
# define BIT_USER_CTRL_I2C_IF_DIS 0x10
/* bit definitions for MPUREG_MST_CTRL */
#define MPUREG_I2C_MST_CTRL 0x24
# define I2C_SLV0_EN 0x80
# define I2C_MST_CLOCK_400KHZ 0x0D
# define I2C_MST_CLOCK_258KHZ 0x08
#define AK8963_I2C_ADDR 0x0c
#define AK8963_WIA 0x00
# define AK8963_Device_ID 0x48
#define AK8963_INFO 0x01
#define AK8963_ST1 0x02
# define AK8963_DRDY 0x01
# define AK8963_DOR 0x02
#define AK8963_HXL 0x03
/* bit definitions for AK8963 CNTL1 */
#define AK8963_CNTL1 0x0A
# define AK8963_CONTINUOUS_MODE1 0x2
# define AK8963_CONTINUOUS_MODE2 0x6
# define AK8963_SELFTEST_MODE 0x8
# define AK8963_POWERDOWN_MODE 0x0
# define AK8963_FUSE_MODE 0xf
# define AK8963_16BIT_ADC 0x10
# define AK8963_14BIT_ADC 0x00
#define AK8963_CNTL2 0x0B
# define AK8963_RESET 0x01
#define AK8963_ASTC 0x0C
# define AK8983_SELFTEST_MAGNETIC_FIELD_ON 0x40
#define AK8963_ASAX 0x10
#define AK8963_DEBUG 0
#if AK8963_DEBUG
#include <stdio.h>
#define error(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define ASSERT(x) assert(x)
#else
#define error(...) do { } while (0)
#ifndef ASSERT
#define ASSERT(x)
#endif
#endif
#if !defined(HAL_COMPASS_AK8963_I2C_ADDR)
#define HAL_COMPASS_AK8963_I2C_ADDR 0xC
#endif
extern const AP_HAL::HAL& hal;
AP_Compass_AK8963::AP_Compass_AK8963(Compass &compass, AP_AK8963_SerialBus *bus) :
AP_Compass_Backend(compass),
_state(STATE_UNKNOWN),
_initialized(false),
_last_update_timestamp(0),
_last_accum_time(0),
_bus(bus)
{
_mag_x_accum =_mag_y_accum = _mag_z_accum = 0;
_mag_x =_mag_y = _mag_z = 0;
_accum_count = 0;
_magnetometer_adc_resolution = AK8963_16BIT_ADC;
}
AP_Compass_Backend *AP_Compass_AK8963::detect_mpu9250(Compass &compass)
{
AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass,
new AP_AK8963_SerialBus_MPU9250());
if (sensor == nullptr) {
return nullptr;
}
if (!sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
AP_Compass_Backend *AP_Compass_AK8963::detect_i2c1(Compass &compass)
{
AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass,
new AP_AK8963_SerialBus_I2C(
hal.i2c1, HAL_COMPASS_AK8963_I2C_ADDR));
if (sensor == nullptr) {
return nullptr;
}
if (!sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
/* stub to satisfy Compass API*/
void AP_Compass_AK8963::accumulate(void)
{
}
bool AP_Compass_AK8963::init()
{
_bus_sem = _bus->get_semaphore();
hal.scheduler->suspend_timer_procs();
if (!_bus_sem->take(100)) {
hal.console->printf("AK8963: Unable to get bus semaphore");
goto fail_sem;
}
if (!_bus->configure()) {
hal.console->printf_P(PSTR("AK8963: Bus not configured for AK8963\n"));
goto fail;
}
if (!_configure()) {
hal.console->printf_P(PSTR("AK8963: not configured\n"));
goto fail;
}
if (!_check_id()) {
hal.console->printf_P(PSTR("AK8963: wrong id\n"));
goto fail;
}
if (!_calibrate()) {
hal.console->printf_P(PSTR("AK8963: not calibrated\n"));
goto fail;
}
if (!_bus->start_conversion()) {
hal.console->printf_P(PSTR("AK8963: conversion not started\n"));
goto fail;
}
_state = STATE_SAMPLE;
_initialized = true;
/* register the compass instance in the frontend */
_compass_instance = register_compass();
set_dev_id(_compass_instance, _bus->get_dev_id());
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Compass_AK8963::_update, void));
_bus_sem->give();
hal.scheduler->resume_timer_procs();
return true;
fail:
_bus_sem->give();
fail_sem:
hal.scheduler->resume_timer_procs();
return false;
}
void AP_Compass_AK8963::read()
{
if (!_initialized) {
return;
}
if (_accum_count == 0) {
/* We're not ready to publish*/
return;
}
/* Update */
Vector3f field(_mag_x_accum * _magnetometer_ASA[0],
_mag_y_accum * _magnetometer_ASA[1],
_mag_z_accum * _magnetometer_ASA[2]);
field /= _accum_count;
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0;
_accum_count = 0;
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
field.rotate(ROTATION_YAW_90);
#endif
publish_field(field, _compass_instance);
}
void AP_Compass_AK8963::_update()
{
if (hal.scheduler->micros() - _last_update_timestamp < 10000) {
return;
}
if (!_sem_take_nonblocking()) {
return;
}
switch (_state)
{
case STATE_SAMPLE:
if (!_collect_samples()) {
_state = STATE_ERROR;
}
break;
case STATE_ERROR:
if (_bus->start_conversion()) {
_state = STATE_SAMPLE;
}
break;
default:
break;
}
_last_update_timestamp = hal.scheduler->micros();
_sem_give();
}
bool AP_Compass_AK8963::_check_id()
{
for (int i = 0; i < 5; i++) {
uint8_t deviceid;
_bus->register_read(AK8963_WIA, &deviceid, 0x01); /* Read AK8963's id */
if (deviceid == AK8963_Device_ID) {
return true;
}
}
return false;
}
bool AP_Compass_AK8963::_configure() {
_bus->register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | _magnetometer_adc_resolution);
return true;
}
bool AP_Compass_AK8963::_reset()
{
_bus->register_write(AK8963_CNTL2, AK8963_RESET);
return true;
}
bool AP_Compass_AK8963::_calibrate()
{
uint8_t cntl1 = _bus->register_read(AK8963_CNTL1);
_bus->register_write(AK8963_CNTL1, AK8963_FUSE_MODE | _magnetometer_adc_resolution); /* Enable FUSE-mode in order to be able to read calibreation data */
uint8_t response[3];
_bus->register_read(AK8963_ASAX, response, 3);
for (int i = 0; i < 3; i++) {
float data = response[i];
_magnetometer_ASA[i] = ((data - 128) / 256 + 1);
error("%d: %lf\n", i, _magnetometer_ASA[i]);
}
_bus->register_write(AK8963_CNTL1, cntl1);
return true;
}
bool AP_Compass_AK8963::_collect_samples()
{
if (!_initialized) {
return false;
}
if (!_bus->read_raw(_mag_x, _mag_y, _mag_z)) {
return false;
} else {
_mag_x_accum += _mag_x;
_mag_y_accum += _mag_y;
_mag_z_accum += _mag_z;
_accum_count++;
if (_accum_count == 10) {
_mag_x_accum /= 2;
_mag_y_accum /= 2;
_mag_z_accum /= 2;
_accum_count = 5;
}
}
return true;
}
bool AP_Compass_AK8963::_sem_take_blocking()
{
return _bus_sem->take(10);
}
bool AP_Compass_AK8963::_sem_give()
{
return _bus_sem->give();
}
bool AP_Compass_AK8963::_sem_take_nonblocking()
{
static int _sem_failure_count = 0;
bool got = _bus_sem->take_nonblocking();
if (!got) {
if (!hal.scheduler->system_initializing()) {
_sem_failure_count++;
if (_sem_failure_count > 100) {
hal.scheduler->panic(PSTR("PANIC: failed to take _bus->sem "
"100 times in a row, in "
"AP_Compass_AK8963"));
}
}
return false; /* never reached */
} else {
_sem_failure_count = 0;
}
return got;
}
void AP_Compass_AK8963::_dump_registers()
{
#if AK8963_DEBUG
error("MPU9250 registers\n");
static uint8_t regs[0x7e];
_bus_read(0x0, regs, 0x7e);
for (uint8_t reg=0x00; reg<=0x7E; reg++) {
uint8_t v = regs[reg];
error(("%d:%02x "), (unsigned)reg, (unsigned)v);
if (reg % 16 == 0) {
error("\n");
}
}
error("\n");
#endif
}
/* MPU9250 implementation of the AK8963 */
AP_AK8963_SerialBus_MPU9250::AP_AK8963_SerialBus_MPU9250()
{
_spi = hal.spi->device(AP_HAL::SPIDevice_MPU9250);
if (_spi == NULL) {
hal.console->println_P(PSTR("Cannot get SPIDevice_MPU9250"));
return;
}
}
void AP_AK8963_SerialBus_MPU9250::register_write(uint8_t address, uint8_t value)
{
_write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR); /* Set the I2C slave addres of AK8963 and set for register_write. */
_write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */
_write(MPUREG_I2C_SLV0_DO, value); /* Register value to continuous measurement in 16-bit */
_write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | 0x01); /* Enable I2C and set 1 byte */
}
void AP_AK8963_SerialBus_MPU9250::register_read(uint8_t address, uint8_t *value, uint8_t count)
{
_write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */
_write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */
_write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */
hal.scheduler->delay(10);
_read(MPUREG_EXT_SENS_DATA_00, value, count);
}
void AP_AK8963_SerialBus_MPU9250::_read(uint8_t address, uint8_t *buf, uint32_t count)
{
ASSERT(count < 150);
uint8_t tx[150];
uint8_t rx[150];
tx[0] = address | READ_FLAG;
tx[1] = 0;
_spi->transaction(tx, rx, count + 1);
memcpy(buf, rx + 1, count);
}
void AP_AK8963_SerialBus_MPU9250::_write(uint8_t address, const uint8_t *buf, uint32_t count)
{
ASSERT(count < 2);
uint8_t tx[2];
tx[0] = address;
memcpy(tx+1, buf, count);
_spi->transaction(tx, NULL, count + 1);
}
bool AP_AK8963_SerialBus_MPU9250::configure()
{
if (!AP_InertialSensor_MPU9250::initialize_driver_state())
return false;
uint8_t user_ctrl;
register_read(MPUREG_USER_CTRL, &user_ctrl, 1);
_write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN);
_write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ);
return true;
}
bool AP_AK8963_SerialBus_MPU9250::read_raw(float &mag_x, float &mag_y, float &mag_z)
{
uint8_t rx[14] = {0};
const uint8_t count = 9;
_read(MPUREG_EXT_SENS_DATA_00, rx, count);
uint8_t st2 = rx[8]; /* End data read by reading ST2 register */
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx + 1] << 8) | v[2*idx]))
if(!(st2 & 0x08)) {
mag_x = (float) int16_val(rx, 1);
mag_y = (float) int16_val(rx, 2);
mag_z = (float) int16_val(rx, 3);
if (is_zero(mag_x) && is_zero(mag_y) && is_zero(mag_z)) {
return false;
}
return true;
} else {
return false;
}
}
AP_HAL::Semaphore * AP_AK8963_SerialBus_MPU9250::get_semaphore()
{
return _spi->get_semaphore();
}
bool AP_AK8963_SerialBus_MPU9250::start_conversion()
{
static const uint8_t address = AK8963_INFO;
/* Read registers from INFO through ST2 */
static const uint8_t count = 0x09;
configure();
_write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */
_write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */
_write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */
return true;
}
uint32_t AP_AK8963_SerialBus_MPU9250::get_dev_id()
{
return AP_COMPASS_TYPE_AK8963_MPU9250;
}
/* I2C implementation of the AK8963 */
AP_AK8963_SerialBus_I2C::AP_AK8963_SerialBus_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr) :
_i2c(i2c),
_addr(addr)
{
}
void AP_AK8963_SerialBus_I2C::register_write(uint8_t address, uint8_t value)
{
_i2c->writeRegister(_addr, address, value);
}
void AP_AK8963_SerialBus_I2C::register_read(uint8_t address, uint8_t *value, uint8_t count)
{
_i2c->readRegisters(_addr, address, count, value);
}
bool AP_AK8963_SerialBus_I2C::read_raw(float &mag_x, float &mag_y, float &mag_z)
{
uint8_t rx[9] = {0};
const uint8_t count = 9;
_i2c->readRegisters(_addr, AK8963_INFO, count, rx);
uint8_t st2 = rx[8]; /* End data read by reading ST2 register */
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx + 1] << 8) | v[2*idx]))
if(!(st2 & 0x08)) {
mag_x = (float) int16_val(rx, 1);
mag_y = (float) int16_val(rx, 2);
mag_z = (float) int16_val(rx, 3);
if (is_zero(mag_x) && is_zero(mag_y) && is_zero(mag_z)) {
return false;
}
return true;
} else {
return false;
}
}
AP_HAL::Semaphore * AP_AK8963_SerialBus_I2C::get_semaphore()
{
return _i2c->get_semaphore();
}
uint32_t AP_AK8963_SerialBus_I2C::get_dev_id()
{
return AP_COMPASS_TYPE_AK8963_I2C;
}
#endif // CONFIG_HAL_BOARD