mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 08:28:30 -04:00
1e7ac873b9
Extended GPS loss can result in the earth field states becoming rotated and making it difficult for the EKF to recover its heading when GPS is regained. During prolonged GPS outages, the position covariance can become large enough to cause the reset function to continually activate. This is fixed by ensuring that position covariances are always reset when the position is reset. The innovation variance was being used incorrectly instead of the state variance to trigger the glitch reset.
533 lines
26 KiB
C++
533 lines
26 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
|
|
#include "AP_NavEKF2.h"
|
|
#include "AP_NavEKF2_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/********************************************************
|
|
* RESET FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute
|
|
// Do not reset vertical velocity using GPS as there is baro alt available to constrain drift
|
|
void NavEKF2_core::ResetVelocity(void)
|
|
{
|
|
if (PV_AidingMode != AID_ABSOLUTE) {
|
|
stateStruct.velocity.zero();
|
|
} else if (!gpsNotAvailable) {
|
|
// reset horizontal velocity states, applying an offset to the GPS velocity to prevent the GPS position being rejected when the GPS position offset is being decayed to zero.
|
|
stateStruct.velocity.x = gpsDataNew.vel.x + gpsVelGlitchOffset.x; // north velocity from blended accel data
|
|
stateStruct.velocity.y = gpsDataNew.vel.y + gpsVelGlitchOffset.y; // east velocity from blended accel data
|
|
}
|
|
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) {
|
|
storedOutput[i].velocity.x = stateStruct.velocity.x;
|
|
storedOutput[i].velocity.y = stateStruct.velocity.y;
|
|
}
|
|
outputDataNew.velocity.x = stateStruct.velocity.x;
|
|
outputDataNew.velocity.y = stateStruct.velocity.y;
|
|
outputDataDelayed.velocity.x = stateStruct.velocity.x;
|
|
outputDataDelayed.velocity.y = stateStruct.velocity.y;
|
|
}
|
|
|
|
// resets position states to last GPS measurement or to zero if in constant position mode
|
|
void NavEKF2_core::ResetPosition(void)
|
|
{
|
|
if (PV_AidingMode != AID_ABSOLUTE) {
|
|
// reset all position state history to the last known position
|
|
stateStruct.position.x = lastKnownPositionNE.x;
|
|
stateStruct.position.y = lastKnownPositionNE.y;
|
|
} else if (!gpsNotAvailable) {
|
|
// write to state vector and compensate for offset between last GPs measurement and the EKF time horizon
|
|
stateStruct.position.x = gpsDataNew.pos.x + gpsPosGlitchOffsetNE.x + 0.001f*gpsDataNew.vel.x*(float(imuDataDelayed.time_ms) - float(lastTimeGpsReceived_ms));
|
|
stateStruct.position.y = gpsDataNew.pos.y + gpsPosGlitchOffsetNE.y + 0.001f*gpsDataNew.vel.y*(float(imuDataDelayed.time_ms) - float(lastTimeGpsReceived_ms));
|
|
}
|
|
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) {
|
|
storedOutput[i].position.x = stateStruct.position.x;
|
|
storedOutput[i].position.y = stateStruct.position.y;
|
|
}
|
|
outputDataNew.position.x = stateStruct.position.x;
|
|
outputDataNew.position.y = stateStruct.position.y;
|
|
outputDataDelayed.position.x = stateStruct.position.x;
|
|
outputDataDelayed.position.y = stateStruct.position.y;
|
|
}
|
|
|
|
// reset the vertical position state using the last height measurement
|
|
void NavEKF2_core::ResetHeight(void)
|
|
{
|
|
// read the altimeter
|
|
readHgtData();
|
|
// write to the state vector
|
|
stateStruct.position.z = -baroDataNew.hgt; // down position from blended accel data
|
|
terrainState = stateStruct.position.z + rngOnGnd;
|
|
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) {
|
|
storedOutput[i].position.z = stateStruct.position.z;
|
|
}
|
|
outputDataNew.position.z = stateStruct.position.z;
|
|
outputDataDelayed.position.z = stateStruct.position.z;
|
|
}
|
|
|
|
// Reset the baro so that it reads zero at the current height
|
|
// Reset the EKF height to zero
|
|
// Adjust the EKf origin height so that the EKF height + origin height is the same as before
|
|
// Return true if the height datum reset has been performed
|
|
// If using a range finder for height do not reset and return false
|
|
bool NavEKF2_core::resetHeightDatum(void)
|
|
{
|
|
// if we are using a range finder for height, return false
|
|
if (frontend._altSource == 1) {
|
|
return false;
|
|
}
|
|
// record the old height estimate
|
|
float oldHgt = -stateStruct.position.z;
|
|
// reset the barometer so that it reads zero at the current height
|
|
_baro.update_calibration();
|
|
// reset the height state
|
|
stateStruct.position.z = 0.0f;
|
|
// adjust the height of the EKF origin so that the origin plus baro height before and afer the reset is the same
|
|
if (validOrigin) {
|
|
EKF_origin.alt += oldHgt*100;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/********************************************************
|
|
* FUSE MEASURED_DATA *
|
|
********************************************************/
|
|
// select fusion of velocity, position and height measurements
|
|
void NavEKF2_core::SelectVelPosFusion()
|
|
{
|
|
// Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz
|
|
// If so, don't fuse measurements on this time step to reduce frame over-runs
|
|
// Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements
|
|
if (magFusePerformed && dtIMUavg < 0.005f && !posVelFusionDelayed) {
|
|
posVelFusionDelayed = true;
|
|
return;
|
|
} else {
|
|
posVelFusionDelayed = false;
|
|
}
|
|
|
|
// check for and read new GPS data
|
|
readGpsData();
|
|
|
|
// Determine if we need to fuse position and velocity data on this time step
|
|
if (RecallGPS() && PV_AidingMode == AID_ABSOLUTE) {
|
|
// Don't fuse velocity data if GPS doesn't support it
|
|
if (frontend._fusionModeGPS <= 1) {
|
|
fuseVelData = true;
|
|
} else {
|
|
fuseVelData = false;
|
|
}
|
|
fusePosData = true;
|
|
} else {
|
|
fuseVelData = false;
|
|
fusePosData = false;
|
|
}
|
|
|
|
// check for and read new height data
|
|
readHgtData();
|
|
|
|
// If we haven't received height data for a while, then declare the height data as being timed out
|
|
// set timeout period based on whether we have vertical GPS velocity available to constrain drift
|
|
hgtRetryTime_ms = (useGpsVertVel && !velTimeout) ? frontend.hgtRetryTimeMode0_ms : frontend.hgtRetryTimeMode12_ms;
|
|
if (imuSampleTime_ms - lastHgtReceived_ms > hgtRetryTime_ms) {
|
|
hgtTimeout = true;
|
|
}
|
|
|
|
// command fusion of height data
|
|
// wait until the EKF time horizon catches up with the measurement
|
|
if (RecallBaro()) {
|
|
// enable fusion
|
|
fuseHgtData = true;
|
|
}
|
|
|
|
// If we are operating without any aiding, fuse in the last known position and zero velocity
|
|
// to constrain tilt drift. This assumes a non-manoeuvring vehicle
|
|
// Do this to coincide with the height fusion
|
|
if (fuseHgtData && PV_AidingMode == AID_NONE) {
|
|
gpsDataDelayed.vel.zero();
|
|
gpsDataDelayed.pos.x = lastKnownPositionNE.x;
|
|
gpsDataDelayed.pos.y = lastKnownPositionNE.y;
|
|
// only fuse synthetic measurements when rate of change of velocity is less than 1g to reduce attitude errors due to launch acceleration
|
|
if (accNavMag < 9.8f) {
|
|
fusePosData = true;
|
|
fuseVelData = true;
|
|
} else {
|
|
fusePosData = false;
|
|
fuseVelData = false;
|
|
}
|
|
}
|
|
|
|
// perform fusion
|
|
if (fuseVelData || fusePosData || fuseHgtData) {
|
|
// ensure that the covariance prediction is up to date before fusing data
|
|
if (!covPredStep) CovariancePrediction();
|
|
FuseVelPosNED();
|
|
// clear the flags to prevent repeated fusion of the same data
|
|
fuseVelData = false;
|
|
fuseHgtData = false;
|
|
fusePosData = false;
|
|
}
|
|
}
|
|
|
|
// fuse selected position, velocity and height measurements
|
|
void NavEKF2_core::FuseVelPosNED()
|
|
{
|
|
// start performance timer
|
|
hal.util->perf_begin(_perf_FuseVelPosNED);
|
|
|
|
// health is set bad until test passed
|
|
velHealth = false;
|
|
posHealth = false;
|
|
hgtHealth = false;
|
|
|
|
// declare variables used to check measurement errors
|
|
Vector3f velInnov;
|
|
|
|
// declare variables used to control access to arrays
|
|
bool fuseData[6] = {false,false,false,false,false,false};
|
|
uint8_t stateIndex;
|
|
uint8_t obsIndex;
|
|
|
|
// declare variables used by state and covariance update calculations
|
|
float posErr;
|
|
Vector6 R_OBS; // Measurement variances used for fusion
|
|
Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only
|
|
Vector6 observation;
|
|
float SK;
|
|
|
|
// perform sequential fusion of GPS measurements. This assumes that the
|
|
// errors in the different velocity and position components are
|
|
// uncorrelated which is not true, however in the absence of covariance
|
|
// data from the GPS receiver it is the only assumption we can make
|
|
// so we might as well take advantage of the computational efficiencies
|
|
// associated with sequential fusion
|
|
if (fuseVelData || fusePosData || fuseHgtData) {
|
|
|
|
// set the GPS data timeout depending on whether airspeed data is present
|
|
uint32_t gpsRetryTime;
|
|
if (useAirspeed()) gpsRetryTime = frontend.gpsRetryTimeUseTAS_ms;
|
|
else gpsRetryTime = frontend.gpsRetryTimeNoTAS_ms;
|
|
|
|
// form the observation vector
|
|
observation[0] = gpsDataDelayed.vel.x + gpsVelGlitchOffset.x;
|
|
observation[1] = gpsDataDelayed.vel.y + gpsVelGlitchOffset.y;
|
|
observation[2] = gpsDataDelayed.vel.z;
|
|
observation[3] = gpsDataDelayed.pos.x + gpsPosGlitchOffsetNE.x;
|
|
observation[4] = gpsDataDelayed.pos.y + gpsPosGlitchOffsetNE.y;
|
|
observation[5] = -baroDataDelayed.hgt;
|
|
|
|
// calculate additional error in GPS position caused by manoeuvring
|
|
posErr = frontend.gpsPosVarAccScale * accNavMag;
|
|
|
|
// estimate the GPS Velocity, GPS horiz position and height measurement variances.
|
|
// if the GPS is able to report a speed error, we use it to adjust the observation noise for GPS velocity
|
|
// otherwise we scale it using manoeuvre acceleration
|
|
// Use different errors if flying without GPS using synthetic position and velocity data
|
|
if (PV_AidingMode == AID_NONE && inFlight) {
|
|
// Assume the vehicle will be flown with velocity changes less than 10 m/s in this mode (realistic for indoor use)
|
|
// This is a compromise between corrections for gyro errors and reducing angular errors due to maneouvres
|
|
R_OBS[0] = sq(10.0f);
|
|
R_OBS[1] = R_OBS[0];
|
|
R_OBS[2] = R_OBS[0];
|
|
// Assume a large position uncertainty so as to contrain position states in this mode but minimise angular errors due to manoeuvres
|
|
R_OBS[3] = sq(25.0f);
|
|
R_OBS[4] = R_OBS[3];
|
|
} else {
|
|
if (gpsSpdAccuracy > 0.0f) {
|
|
// use GPS receivers reported speed accuracy if available and floor at value set by gps noise parameter
|
|
R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend._gpsHorizVelNoise, 50.0f));
|
|
R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend._gpsVertVelNoise, 50.0f));
|
|
} else {
|
|
// calculate additional error in GPS velocity caused by manoeuvring
|
|
R_OBS[0] = sq(constrain_float(frontend._gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsNEVelVarAccScale * accNavMag);
|
|
R_OBS[2] = sq(constrain_float(frontend._gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsDVelVarAccScale * accNavMag);
|
|
}
|
|
R_OBS[1] = R_OBS[0];
|
|
R_OBS[3] = sq(constrain_float(frontend._gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr);
|
|
R_OBS[4] = R_OBS[3];
|
|
}
|
|
R_OBS[5] = sq(constrain_float(frontend._baroAltNoise, 0.1f, 10.0f));
|
|
|
|
// reduce weighting (increase observation noise) on baro if we are likely to be in ground effect
|
|
if (getTakeoffExpected() || getTouchdownExpected()) {
|
|
R_OBS[5] *= frontend.gndEffectBaroScaler;
|
|
}
|
|
|
|
// For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity
|
|
// For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance
|
|
// plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early
|
|
for (uint8_t i=0; i<=1; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend._gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsNEVelVarAccScale * accNavMag);
|
|
for (uint8_t i=2; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i];
|
|
|
|
|
|
// if vertical GPS velocity data is being used, check to see if the GPS vertical velocity and barometer
|
|
// innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting
|
|
// the accelerometers and we should disable the GPS and barometer innovation consistency checks.
|
|
if (useGpsVertVel && fuseVelData && (imuSampleTime_ms - lastHgtReceived_ms) < (2 * frontend.hgtAvg_ms)) {
|
|
// calculate innovations for height and vertical GPS vel measurements
|
|
float hgtErr = stateStruct.position.z - observation[5];
|
|
float velDErr = stateStruct.velocity.z - observation[2];
|
|
// check if they are the same sign and both more than 3-sigma out of bounds
|
|
if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) {
|
|
badIMUdata = true;
|
|
} else {
|
|
badIMUdata = false;
|
|
}
|
|
}
|
|
|
|
// calculate innovations and check GPS data validity using an innovation consistency check
|
|
// test position measurements
|
|
if (fusePosData) {
|
|
// test horizontal position measurements
|
|
innovVelPos[3] = stateStruct.position.x - observation[3];
|
|
innovVelPos[4] = stateStruct.position.y - observation[4];
|
|
varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3];
|
|
varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4];
|
|
// apply an innovation consistency threshold test, but don't fail if bad IMU data
|
|
float maxPosInnov2 = sq(frontend._gpsPosInnovGate)*(varInnovVelPos[3] + varInnovVelPos[4]);
|
|
posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2;
|
|
posHealth = ((posTestRatio < 1.0f) || badIMUdata);
|
|
// declare a timeout condition if we have been too long without data or not aiding
|
|
posTimeout = (((imuSampleTime_ms - lastPosPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE);
|
|
// use position data if healthy, timed out, or in constant position mode
|
|
if (posHealth || posTimeout || (PV_AidingMode == AID_NONE)) {
|
|
posHealth = true;
|
|
// only reset the failed time and do glitch timeout checks if we are doing full aiding
|
|
if (PV_AidingMode == AID_ABSOLUTE) {
|
|
lastPosPassTime_ms = imuSampleTime_ms;
|
|
// if timed out or outside the specified uncertainty radius, increment the offset applied to GPS data to compensate for large GPS position jumps
|
|
if (posTimeout || ((P[6][6] + P[7][7]) > sq(float(frontend._gpsGlitchRadiusMax)))) {
|
|
gpsPosGlitchOffsetNE.x += innovVelPos[3];
|
|
gpsPosGlitchOffsetNE.y += innovVelPos[4];
|
|
// limit the radius of the offset and decay the offset to zero radially
|
|
decayGpsOffset();
|
|
// reset the position to the current GPS position which will include the glitch correction offset
|
|
ResetPosition();
|
|
// reset the velocity to the GPS velocity
|
|
ResetVelocity();
|
|
// don't fuse data on this time step
|
|
fusePosData = false;
|
|
// Reset the position variances and corresponding covariances to a value that will pass the checks
|
|
zeroRows(P,6,7);
|
|
zeroCols(P,6,7);
|
|
P[6][6] = sq(float(0.5f*frontend._gpsGlitchRadiusMax));
|
|
P[7][7] = P[6][6];
|
|
// Reset the normalised innovation to avoid false failing the bad position fusion test
|
|
posTestRatio = 0.0f;
|
|
velTestRatio = 0.0f;
|
|
}
|
|
}
|
|
} else {
|
|
posHealth = false;
|
|
}
|
|
}
|
|
|
|
// test velocity measurements
|
|
if (fuseVelData) {
|
|
// test velocity measurements
|
|
uint8_t imax = 2;
|
|
// Don't fuse vertical velocity observations if inhibited by the user or if we are using synthetic data
|
|
if (frontend._fusionModeGPS >= 1 || PV_AidingMode != AID_ABSOLUTE) {
|
|
imax = 1;
|
|
}
|
|
float innovVelSumSq = 0; // sum of squares of velocity innovations
|
|
float varVelSum = 0; // sum of velocity innovation variances
|
|
for (uint8_t i = 0; i<=imax; i++) {
|
|
// velocity states start at index 3
|
|
stateIndex = i + 3;
|
|
// calculate innovations using blended and single IMU predicted states
|
|
velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended
|
|
// calculate innovation variance
|
|
varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i];
|
|
// sum the innovation and innovation variances
|
|
innovVelSumSq += sq(velInnov[i]);
|
|
varVelSum += varInnovVelPos[i];
|
|
}
|
|
// apply an innovation consistency threshold test, but don't fail if bad IMU data
|
|
// calculate the test ratio
|
|
velTestRatio = innovVelSumSq / (varVelSum * sq(frontend._gpsVelInnovGate));
|
|
// fail if the ratio is greater than 1
|
|
velHealth = ((velTestRatio < 1.0f) || badIMUdata);
|
|
// declare a timeout if we have not fused velocity data for too long or not aiding
|
|
velTimeout = (((imuSampleTime_ms - lastVelPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE);
|
|
// if data is healthy or in constant velocity mode we fuse it
|
|
if (velHealth || velTimeout) {
|
|
velHealth = true;
|
|
// restart the timeout count
|
|
lastVelPassTime_ms = imuSampleTime_ms;
|
|
} else if (velTimeout && !posHealth && PV_AidingMode == AID_ABSOLUTE) {
|
|
// if data is not healthy and timed out and position is unhealthy and we are using aiding, we reset the velocity, but do not fuse data on this time step
|
|
ResetVelocity();
|
|
fuseVelData = false;
|
|
// Reset the normalised innovation to avoid false failing the bad position fusion test
|
|
velTestRatio = 0.0f;
|
|
} else {
|
|
// if data is unhealthy and position is healthy, we do not fuse it
|
|
velHealth = false;
|
|
}
|
|
}
|
|
|
|
// test height measurements
|
|
if (fuseHgtData) {
|
|
// calculate height innovations
|
|
innovVelPos[5] = stateStruct.position.z - observation[5];
|
|
|
|
varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5];
|
|
// calculate the innovation consistency test ratio
|
|
hgtTestRatio = sq(innovVelPos[5]) / (sq(frontend._hgtInnovGate) * varInnovVelPos[5]);
|
|
// fail if the ratio is > 1, but don't fail if bad IMU data
|
|
hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata);
|
|
hgtTimeout = (imuSampleTime_ms - lastHgtPassTime_ms) > hgtRetryTime_ms;
|
|
// Fuse height data if healthy or timed out or in constant position mode
|
|
if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE)) {
|
|
hgtHealth = true;
|
|
lastHgtPassTime_ms = imuSampleTime_ms;
|
|
// if timed out, reset the height, but do not fuse data on this time step
|
|
if (hgtTimeout) {
|
|
ResetHeight();
|
|
fuseHgtData = false;
|
|
}
|
|
}
|
|
else {
|
|
hgtHealth = false;
|
|
}
|
|
}
|
|
|
|
// set range for sequential fusion of velocity and position measurements depending on which data is available and its health
|
|
if (fuseVelData && velHealth) {
|
|
fuseData[0] = true;
|
|
fuseData[1] = true;
|
|
if (useGpsVertVel) {
|
|
fuseData[2] = true;
|
|
}
|
|
tiltErrVec.zero();
|
|
}
|
|
if (fusePosData && posHealth) {
|
|
fuseData[3] = true;
|
|
fuseData[4] = true;
|
|
tiltErrVec.zero();
|
|
}
|
|
if (fuseHgtData && hgtHealth) {
|
|
fuseData[5] = true;
|
|
}
|
|
|
|
// fuse measurements sequentially
|
|
for (obsIndex=0; obsIndex<=5; obsIndex++) {
|
|
if (fuseData[obsIndex]) {
|
|
stateIndex = 3 + obsIndex;
|
|
// calculate the measurement innovation, using states from a different time coordinate if fusing height data
|
|
// adjust scaling on GPS measurement noise variances if not enough satellites
|
|
if (obsIndex <= 2)
|
|
{
|
|
innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex];
|
|
R_OBS[obsIndex] *= sq(gpsNoiseScaler);
|
|
}
|
|
else if (obsIndex == 3 || obsIndex == 4) {
|
|
innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
|
|
R_OBS[obsIndex] *= sq(gpsNoiseScaler);
|
|
} else {
|
|
innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
|
|
if (obsIndex == 5) {
|
|
const float gndMaxBaroErr = 4.0f;
|
|
const float gndBaroInnovFloor = -0.5f;
|
|
|
|
if(getTouchdownExpected()) {
|
|
// when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor
|
|
// constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr
|
|
// this function looks like this:
|
|
// |/
|
|
//---------|---------
|
|
// ____/|
|
|
// / |
|
|
// / |
|
|
innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate the Kalman gain and calculate innovation variances
|
|
varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex];
|
|
SK = 1.0f/varInnovVelPos[obsIndex];
|
|
for (uint8_t i= 0; i<=15; i++) {
|
|
Kfusion[i] = P[i][stateIndex]*SK;
|
|
}
|
|
|
|
// inhibit magnetic field state estimation by setting Kalman gains to zero
|
|
if (!inhibitMagStates) {
|
|
for (uint8_t i = 16; i<=21; i++) {
|
|
Kfusion[i] = P[i][stateIndex]*SK;
|
|
}
|
|
} else {
|
|
for (uint8_t i = 16; i<=21; i++) {
|
|
Kfusion[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// inhibit wind state estimation by setting Kalman gains to zero
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = P[22][stateIndex]*SK;
|
|
Kfusion[23] = P[23][stateIndex]*SK;
|
|
} else {
|
|
Kfusion[22] = 0.0f;
|
|
Kfusion[23] = 0.0f;
|
|
}
|
|
|
|
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
|
|
stateStruct.angErr.zero();
|
|
|
|
// calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data
|
|
// Don't apply corrections to Z bias state as this has been done already as part of the single IMU calculations
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) {
|
|
statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex];
|
|
}
|
|
|
|
// the first 3 states represent the angular misalignment vector. This is
|
|
// is used to correct the estimated quaternion
|
|
stateStruct.quat.rotate(stateStruct.angErr);
|
|
|
|
// sum the attitude error from velocity and position fusion only
|
|
// used as a metric for convergence monitoring
|
|
if (obsIndex != 5) {
|
|
tiltErrVec += stateStruct.angErr;
|
|
}
|
|
|
|
// update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations
|
|
// this is a numerically optimised implementation of standard equation P = (I - K*H)*P;
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++)
|
|
{
|
|
KHP[i][j] = Kfusion[i] * P[stateIndex][j];
|
|
}
|
|
}
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
// stop performance timer
|
|
hal.util->perf_end(_perf_FuseVelPosNED);
|
|
}
|
|
|
|
/********************************************************
|
|
* MISC FUNCTIONS *
|
|
********************************************************/
|
|
|
|
#endif // HAL_CPU_CLASS
|