ardupilot/libraries/AP_BattMonitor/AP_BattMonitor_UAVCAN.cpp

499 lines
19 KiB
C++

#include "AP_BattMonitor_config.h"
#if AP_BATTERY_UAVCAN_BATTERYINFO_ENABLED
#include <AP_HAL/AP_HAL.h>
#include "AP_BattMonitor.h"
#include "AP_BattMonitor_UAVCAN.h"
#include <AP_CANManager/AP_CANManager.h>
#include <AP_Common/AP_Common.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Math/AP_Math.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <uavcan/equipment/power/BatteryInfo.hpp>
#include <ardupilot/equipment/power/BatteryInfoAux.hpp>
#include <mppt/Stream.hpp>
#include <mppt/OutputEnable.hpp>
#define LOG_TAG "BattMon"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_BattMonitor_UAVCAN::var_info[] = {
// @Param: CURR_MULT
// @DisplayName: Scales reported power monitor current
// @Description: Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications
// @Range: .1 10
// @User: Advanced
AP_GROUPINFO("CURR_MULT", 30, AP_BattMonitor_UAVCAN, _curr_mult, 1.0),
// Param indexes must be between 30 and 39 to avoid conflict with other battery monitor param tables loaded by pointer
AP_GROUPEND
};
UC_REGISTRY_BINDER(BattInfoCb, uavcan::equipment::power::BatteryInfo);
UC_REGISTRY_BINDER(BattInfoAuxCb, ardupilot::equipment::power::BatteryInfoAux);
UC_REGISTRY_BINDER(MpptStreamCb, mppt::Stream);
static void trampoline_handleOutputEnable(const uavcan::ServiceCallResult<mppt::OutputEnable>& resp);
static uavcan::ServiceClient<mppt::OutputEnable>* outputEnable_client[HAL_MAX_CAN_PROTOCOL_DRIVERS];
/// Constructor
AP_BattMonitor_UAVCAN::AP_BattMonitor_UAVCAN(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, BattMonitor_UAVCAN_Type type, AP_BattMonitor_Params &params) :
AP_BattMonitor_Backend(mon, mon_state, params),
_type(type)
{
AP_Param::setup_object_defaults(this,var_info);
_state.var_info = var_info;
// starts with not healthy
_state.healthy = false;
}
void AP_BattMonitor_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan)
{
if (ap_uavcan == nullptr) {
return;
}
auto* node = ap_uavcan->get_node();
uavcan::Subscriber<uavcan::equipment::power::BatteryInfo, BattInfoCb> *battinfo_listener;
battinfo_listener = new uavcan::Subscriber<uavcan::equipment::power::BatteryInfo, BattInfoCb>(*node);
// Backend Msg Handler
const int battinfo_listener_res = battinfo_listener->start(BattInfoCb(ap_uavcan, &handle_battery_info_trampoline));
if (battinfo_listener_res < 0) {
AP_BoardConfig::allocation_error("UAVCAN BatteryInfo subscriber start problem\n\r");
return;
}
uavcan::Subscriber<ardupilot::equipment::power::BatteryInfoAux, BattInfoAuxCb> *battinfo_aux_listener;
battinfo_aux_listener = new uavcan::Subscriber<ardupilot::equipment::power::BatteryInfoAux, BattInfoAuxCb>(*node);
// Backend Msg Handler
const int battinfo_aux_listener_res = battinfo_aux_listener->start(BattInfoAuxCb(ap_uavcan, &handle_battery_info_aux_trampoline));
if (battinfo_aux_listener_res < 0) {
AP_BoardConfig::allocation_error("UAVCAN BatteryInfoAux subscriber start problem");
return;
}
uavcan::Subscriber<mppt::Stream, MpptStreamCb> *mppt_stream_listener;
mppt_stream_listener = new uavcan::Subscriber<mppt::Stream, MpptStreamCb>(*node);
// Backend Msg Handler
const int mppt_stream_listener_res = mppt_stream_listener->start(MpptStreamCb(ap_uavcan, &handle_mppt_stream_trampoline));
if (mppt_stream_listener_res < 0) {
AP_BoardConfig::allocation_error("UAVCAN Mppt::Stream subscriber start problem");
return;
}
// set up callback to verify mppt::OutputEnable
const uint8_t driver_index = ap_uavcan->get_driver_index();
outputEnable_client[driver_index] = new uavcan::ServiceClient<mppt::OutputEnable>(*node);
if (outputEnable_client[driver_index] == nullptr || outputEnable_client[driver_index]->init() < 0) {
AP_BoardConfig::allocation_error("UAVCAN Mppt::outputEnable client start problem");
return;
}
outputEnable_client[driver_index]->setCallback(trampoline_handleOutputEnable);
}
AP_BattMonitor_UAVCAN* AP_BattMonitor_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t battery_id)
{
if (ap_uavcan == nullptr) {
return nullptr;
}
for (uint8_t i = 0; i < AP::battery()._num_instances; i++) {
if (AP::battery().drivers[i] == nullptr ||
AP::battery().get_type(i) != AP_BattMonitor::Type::UAVCAN_BatteryInfo) {
continue;
}
AP_BattMonitor_UAVCAN* driver = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i];
if (driver->_ap_uavcan == ap_uavcan && driver->_node_id == node_id && match_battery_id(i, battery_id)) {
return driver;
}
}
// find empty uavcan driver
for (uint8_t i = 0; i < AP::battery()._num_instances; i++) {
if (AP::battery().drivers[i] != nullptr &&
AP::battery().get_type(i) == AP_BattMonitor::Type::UAVCAN_BatteryInfo &&
match_battery_id(i, battery_id)) {
AP_BattMonitor_UAVCAN* batmon = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i];
if(batmon->_ap_uavcan != nullptr || batmon->_node_id != 0) {
continue;
}
batmon->_ap_uavcan = ap_uavcan;
batmon->_node_id = node_id;
batmon->_instance = i;
batmon->_node = ap_uavcan->get_node();
batmon->init();
AP::can().log_text(AP_CANManager::LOG_INFO,
LOG_TAG,
"Registered BattMonitor Node %d on Bus %d\n",
node_id,
ap_uavcan->get_driver_index());
return batmon;
}
}
return nullptr;
}
void AP_BattMonitor_UAVCAN::handle_battery_info(const BattInfoCb &cb)
{
update_interim_state(cb.msg->voltage, cb.msg->current, cb.msg->temperature, cb.msg->state_of_charge_pct);
WITH_SEMAPHORE(_sem_battmon);
_remaining_capacity_wh = cb.msg->remaining_capacity_wh;
_full_charge_capacity_wh = cb.msg->full_charge_capacity_wh;
}
void AP_BattMonitor_UAVCAN::update_interim_state(const float voltage, const float current, const float temperature_K, const uint8_t soc)
{
WITH_SEMAPHORE(_sem_battmon);
_interim_state.voltage = voltage;
_interim_state.current_amps = _curr_mult * current;
_soc = soc;
if (!isnan(temperature_K) && temperature_K > 0) {
// Temperature reported from battery in kelvin and stored internally in Celsius.
_interim_state.temperature = KELVIN_TO_C(temperature_K);
_interim_state.temperature_time = AP_HAL::millis();
}
const uint32_t tnow = AP_HAL::micros();
if (!_has_battery_info_aux || _mppt.is_detected) {
const uint32_t dt_us = tnow - _interim_state.last_time_micros;
// update total current drawn since startup
update_consumed(_interim_state, dt_us);
}
// record time
_interim_state.last_time_micros = tnow;
_interim_state.healthy = true;
}
void AP_BattMonitor_UAVCAN::handle_battery_info_aux(const BattInfoAuxCb &cb)
{
WITH_SEMAPHORE(_sem_battmon);
uint8_t cell_count = MIN(ARRAY_SIZE(_interim_state.cell_voltages.cells), cb.msg->voltage_cell.size());
float remaining_capacity_ah = _remaining_capacity_wh / cb.msg->nominal_voltage;
float full_charge_capacity_ah = _full_charge_capacity_wh / cb.msg->nominal_voltage;
_cycle_count = cb.msg->cycle_count;
for (uint8_t i = 0; i < cell_count; i++) {
_interim_state.cell_voltages.cells[i] = cb.msg->voltage_cell[i] * 1000;
}
_interim_state.is_powering_off = cb.msg->is_powering_off;
_interim_state.consumed_mah = (full_charge_capacity_ah - remaining_capacity_ah) * 1000;
_interim_state.consumed_wh = _full_charge_capacity_wh - _remaining_capacity_wh;
_interim_state.time_remaining = is_zero(_interim_state.current_amps) ? 0 : (remaining_capacity_ah / _interim_state.current_amps * 3600);
_interim_state.has_time_remaining = true;
_has_cell_voltages = true;
_has_time_remaining = true;
_has_consumed_energy = true;
_has_battery_info_aux = true;
}
void AP_BattMonitor_UAVCAN::handle_mppt_stream(const MpptStreamCb &cb)
{
const bool use_input_value = option_is_set(AP_BattMonitor_Params::Options::MPPT_Use_Input_Value);
const float voltage = use_input_value ? cb.msg->input_voltage : cb.msg->output_voltage;
const float current = use_input_value ? cb.msg->input_current : cb.msg->output_current;
// use an invalid soc so we use the library calculated one
const uint8_t soc = 127;
// convert C to Kelvin
const float temperature_K = isnan(cb.msg->temperature) ? 0 : C_TO_KELVIN(cb.msg->temperature);
update_interim_state(voltage, current, temperature_K, soc);
if (!_mppt.is_detected) {
// this is the first time the mppt message has been received
// so set powered up state
_mppt.is_detected = true;
// Boot/Power-up event
if (option_is_set(AP_BattMonitor_Params::Options::MPPT_Power_On_At_Boot)) {
mppt_set_powered_state(true);
} else if (option_is_set(AP_BattMonitor_Params::Options::MPPT_Power_Off_At_Boot)) {
mppt_set_powered_state(false);
}
}
#if AP_BATTMONITOR_UAVCAN_MPPT_DEBUG
if (_mppt.fault_flags != cb.msg->fault_flags) {
mppt_report_faults(_instance, cb.msg->fault_flags);
}
#endif
_mppt.fault_flags = cb.msg->fault_flags;
}
void AP_BattMonitor_UAVCAN::handle_battery_info_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const BattInfoCb &cb)
{
AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, cb.msg->battery_id);
if (driver == nullptr) {
return;
}
driver->handle_battery_info(cb);
}
void AP_BattMonitor_UAVCAN::handle_battery_info_aux_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const BattInfoAuxCb &cb)
{
AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, cb.msg->battery_id);
if (driver == nullptr) {
return;
}
driver->handle_battery_info_aux(cb);
}
void AP_BattMonitor_UAVCAN::handle_mppt_stream_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MpptStreamCb &cb)
{
AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, node_id);
if (driver == nullptr) {
return;
}
driver->handle_mppt_stream(cb);
}
// read - read the voltage and current
void AP_BattMonitor_UAVCAN::read()
{
uint32_t tnow = AP_HAL::micros();
// timeout after 5 seconds
if ((tnow - _interim_state.last_time_micros) > AP_BATTMONITOR_UAVCAN_TIMEOUT_MICROS) {
_interim_state.healthy = false;
}
// Copy over relevant states over to main state
WITH_SEMAPHORE(_sem_battmon);
_state.temperature = _interim_state.temperature;
_state.temperature_time = _interim_state.temperature_time;
_state.voltage = _interim_state.voltage;
_state.current_amps = _interim_state.current_amps;
_state.consumed_mah = _interim_state.consumed_mah;
_state.consumed_wh = _interim_state.consumed_wh;
_state.last_time_micros = _interim_state.last_time_micros;
_state.healthy = _interim_state.healthy;
_state.time_remaining = _interim_state.time_remaining;
_state.has_time_remaining = _interim_state.has_time_remaining;
_state.is_powering_off = _interim_state.is_powering_off;
memcpy(_state.cell_voltages.cells, _interim_state.cell_voltages.cells, sizeof(_state.cell_voltages));
_has_temperature = (AP_HAL::millis() - _state.temperature_time) <= AP_BATT_MONITOR_TIMEOUT;
// check if MPPT should be powered on/off depending upon arming state
if (_mppt.is_detected) {
mppt_check_powered_state();
}
}
// Return true if the DroneCAN state of charge should be used.
// Return false if state of charge should be calculated locally by counting mah.
bool AP_BattMonitor_UAVCAN::use_CAN_SoC() const
{
// a UAVCAN battery monitor may not be able to supply a state of charge. If it can't then
// the user can set the option to use current integration in the backend instead.
// SOC of 127 is used as an invalid SOC flag ie system configuration errors or SOC estimation unavailable
return !(option_is_set(AP_BattMonitor_Params::Options::Ignore_UAVCAN_SoC) ||
_mppt.is_detected ||
(_soc == 127));
}
/// capacity_remaining_pct - returns true if the percentage is valid and writes to percentage argument
bool AP_BattMonitor_UAVCAN::capacity_remaining_pct(uint8_t &percentage) const
{
if (!use_CAN_SoC()) {
return AP_BattMonitor_Backend::capacity_remaining_pct(percentage);
}
// the monitor must have current readings in order to estimate consumed_mah and be healthy
if (!has_current() || !_state.healthy) {
return false;
}
percentage = _soc;
return true;
}
// reset remaining percentage to given value
bool AP_BattMonitor_UAVCAN::reset_remaining(float percentage)
{
if (use_CAN_SoC()) {
// Cannot reset external state of charge
return false;
}
WITH_SEMAPHORE(_sem_battmon);
if (!AP_BattMonitor_Backend::reset_remaining(percentage)) {
// Base class reset failed
return false;
}
// Reset interim state that is used internally, this is then copied back to the main state in the read() call
_interim_state.consumed_mah = _state.consumed_mah;
_interim_state.consumed_wh = _state.consumed_wh;
return true;
}
/// get_cycle_count - return true if cycle count can be provided and fills in cycles argument
bool AP_BattMonitor_UAVCAN::get_cycle_count(uint16_t &cycles) const
{
if (_has_battery_info_aux) {
cycles = _cycle_count;
return true;
}
return false;
}
// request MPPT board to power on/off depending upon vehicle arming state as specified by BATT_OPTIONS
void AP_BattMonitor_UAVCAN::mppt_check_powered_state()
{
if ((_mppt.powered_state_remote_ms != 0) && (AP_HAL::millis() - _mppt.powered_state_remote_ms >= 1000)) {
// there's already a set attempt that didnt' respond. Retry at 1Hz
mppt_set_powered_state(_mppt.powered_state);
}
// check if vehicle armed state has changed
const bool vehicle_armed = hal.util->get_soft_armed();
if ((!_mppt.vehicle_armed_last && vehicle_armed) && option_is_set(AP_BattMonitor_Params::Options::MPPT_Power_On_At_Arm)) {
// arm event
mppt_set_powered_state(true);
} else if ((_mppt.vehicle_armed_last && !vehicle_armed) && option_is_set(AP_BattMonitor_Params::Options::MPPT_Power_Off_At_Disarm)) {
// disarm event
mppt_set_powered_state(false);
}
_mppt.vehicle_armed_last = vehicle_armed;
}
// request MPPT board to power on or off
// power_on should be true to power on the MPPT, false to power off
// force should be true to force sending the state change request to the MPPT
void AP_BattMonitor_UAVCAN::mppt_set_powered_state(bool power_on)
{
if (_ap_uavcan == nullptr || _node == nullptr || !_mppt.is_detected) {
return;
}
_mppt.powered_state = power_on;
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Battery %u: powering %s%s", (unsigned)_instance+1, _mppt.powered_state ? "ON" : "OFF",
(_mppt.powered_state_remote_ms == 0) ? "" : " Retry");
// set up a request /w a status callback
mppt::OutputEnable::Request request;
request.enable = _mppt.powered_state;
request.disable = !request.enable;
_mppt.powered_state_remote_ms = AP_HAL::millis();
const uint8_t driver_index = _ap_uavcan->get_driver_index();
outputEnable_client[driver_index]->call(_node_id, request);
}
// callback trampoline of outputEnable response to verify it is enabled or disabled
void trampoline_handleOutputEnable(const uavcan::ServiceCallResult<mppt::OutputEnable>& resp)
{
uint8_t can_num_drivers = AP::can().get_num_drivers();
for (uint8_t i = 0; i < can_num_drivers; i++) {
AP_UAVCAN *uavcan = AP_UAVCAN::get_uavcan(i);
if (uavcan == nullptr) {
continue;
}
const uint8_t node_id = resp.getResponse().getSrcNodeID().get();
AP_BattMonitor_UAVCAN* driver = AP_BattMonitor_UAVCAN::get_uavcan_backend(uavcan, node_id, node_id);
if (driver == nullptr) {
continue;
}
const auto &response = resp.getResponse();
const uint8_t nodeId = response.getSrcNodeID().get();
const bool enabled = response.enabled;
driver->handle_outputEnable_response(nodeId, enabled);
}
}
// callback from outputEnable to verify it is enabled or disabled
void AP_BattMonitor_UAVCAN::handle_outputEnable_response(const uint8_t nodeId, const bool enabled)
{
if (nodeId != _node_id) {
// this response is not from the node we are looking for
return;
}
if (enabled == _mppt.powered_state) {
// we got back what we expected it to be. We set it on, it now says it on (or vice versa).
// Clear the timer so we don't re-request
_mppt.powered_state_remote_ms = 0;
}
}
#if AP_BATTMONITOR_UAVCAN_MPPT_DEBUG
// report changes in MPPT faults
void AP_BattMonitor_UAVCAN::mppt_report_faults(const uint8_t instance, const uint8_t fault_flags)
{
// handle recovery
if (fault_flags == 0) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Battery %u: OK", (unsigned)instance+1);
return;
}
// send battery faults via text messages
for (uint8_t fault_bit=0x01; fault_bit <= 0x08; fault_bit <<= 1) {
// this loop is to generate multiple messages if there are multiple concurrent faults, but also run once if there are no faults
if ((fault_bit & fault_flags) != 0) {
const MPPT_FaultFlags err = (MPPT_FaultFlags)fault_bit;
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Battery %u: %s", (unsigned)instance+1, mppt_fault_string(err));
}
}
}
// returns string description of MPPT fault bit. Only handles single bit faults
const char* AP_BattMonitor_UAVCAN::mppt_fault_string(const MPPT_FaultFlags fault)
{
switch (fault) {
case MPPT_FaultFlags::OVER_VOLTAGE:
return "over voltage";
case MPPT_FaultFlags::UNDER_VOLTAGE:
return "under voltage";
case MPPT_FaultFlags::OVER_CURRENT:
return "over current";
case MPPT_FaultFlags::OVER_TEMPERATURE:
return "over temp";
}
return "unknown";
}
#endif
// return mavlink fault bitmask (see MAV_BATTERY_FAULT enum)
uint32_t AP_BattMonitor_UAVCAN::get_mavlink_fault_bitmask() const
{
// return immediately if not mppt or no faults
if (!_mppt.is_detected || (_mppt.fault_flags == 0)) {
return 0;
}
// convert mppt fault bitmask to mavlink fault bitmask
uint32_t mav_fault_bitmask = 0;
if ((_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::OVER_VOLTAGE) || (_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::UNDER_VOLTAGE)) {
mav_fault_bitmask |= MAV_BATTERY_FAULT_INCOMPATIBLE_VOLTAGE;
}
if (_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::OVER_CURRENT) {
mav_fault_bitmask |= MAV_BATTERY_FAULT_OVER_CURRENT;
}
if (_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::OVER_TEMPERATURE) {
mav_fault_bitmask |= MAV_BATTERY_FAULT_OVER_TEMPERATURE;
}
return mav_fault_bitmask;
}
#endif // AP_BATTERY_UAVCAN_BATTERYINFO_ENABLED