ardupilot/libraries/AP_Baro/AP_Baro_BMP085.cpp
Andrew Tridgell 2960abf41f I2C: convert barometer library to new I2C library
this also adds a healthy attribute and error checking
2011-12-28 20:41:53 +11:00

269 lines
6.5 KiB
C++
Raw Blame History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
APM_BMP085.cpp - Arduino Library for BMP085 absolute pressure sensor
Code by Jordi Mu<4D>oz and Jose Julio. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Sensor is conected to I2C port
Sensor End of Conversion (EOC) pin is PC7 (30)
Variables:
RawTemp : Raw temperature data
RawPress : Raw pressure data
Temp : Calculated temperature (in 0.1<EFBFBD>C units)
Press : Calculated pressure (in Pa units)
Methods:
Init() : Initialization of I2C and read sensor calibration data
Read() : Read sensor data and calculate Temperature and Pressure
This function is optimized so the main host don<6F>t need to wait
You can call this function in your main loop
It returns a 1 if there are new data.
Internal functions:
Command_ReadTemp(): Send commando to read temperature
Command_ReadPress(): Send commando to read Pressure
ReadTemp() : Read temp register
ReadPress() : Read press register
Calculate() : Calculate Temperature and Pressure in real units
*/
extern "C" {
// AVR LibC Includes
#include <inttypes.h>
#include <avr/interrupt.h>
#include "WConstants.h"
}
#include <AP_Common.h>
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <I2C.h>
#include "AP_Baro_BMP085.h"
#define BMP085_ADDRESS 0x77 //(0xEE >> 1)
#define BMP085_EOC 30 // End of conversion pin PC7
// the apm2 hardware needs to check the state of the
// chip using a direct IO port
// On APM2 prerelease hw, the data ready port is hooked up to PE7, which
// is not available to the arduino digitalRead function.
#define BMP_DATA_READY() (_apm2_hardware?(PINE&0x80):digitalRead(BMP085_EOC))
// Public Methods //////////////////////////////////////////////////////////////
bool AP_Baro_BMP085::init( AP_PeriodicProcess * scheduler )
{
byte buff[22];
pinMode(BMP085_EOC, INPUT); // End Of Conversion (PC7) input
oss = 3; // Over Sampling setting 3 = High resolution
BMP085_State = 0; // Initial state
// We read the calibration data registers
if (I2c.read(BMP085_ADDRESS, 0xAA, 22, buff) != 0) {
healthy = false;
return false;
}
ac1 = ((int)buff[0] << 8) | buff[1];
ac2 = ((int)buff[2] << 8) | buff[3];
ac3 = ((int)buff[4] << 8) | buff[5];
ac4 = ((int)buff[6] << 8) | buff[7];
ac5 = ((int)buff[8] << 8) | buff[9];
ac6 = ((int)buff[10] << 8) | buff[11];
b1 = ((int)buff[12] << 8) | buff[13];
b2 = ((int)buff[14] << 8) | buff[15];
mb = ((int)buff[16] << 8) | buff[17];
mc = ((int)buff[18] << 8) | buff[19];
md = ((int)buff[20] << 8) | buff[21];
//Send a command to read Temp
Command_ReadTemp();
BMP085_State = 1;
healthy = true;
return true;
}
// Read the sensor. This is a state machine
// We read one time Temperature (state=1) and then 4 times Pressure (states 2-5)
uint8_t AP_Baro_BMP085::read()
{
uint8_t result = 0;
if (BMP085_State == 1){
if (BMP_DATA_READY()){
BMP085_State = 2;
ReadTemp(); // On state 1 we read temp
Command_ReadPress();
}
}else{
if (BMP_DATA_READY()){
BMP085_State = 1; // Start again from state = 1
ReadPress();
Calculate();
Command_ReadTemp(); // Read Temp
result = 1; // New pressure reading
}
}
return(result);
}
int32_t AP_Baro_BMP085::get_pressure() {
return Press;
}
int16_t AP_Baro_BMP085::get_temperature() {
return Temp;
}
float AP_Baro_BMP085::get_altitude() {
return 0.0; // TODO
}
int32_t AP_Baro_BMP085::get_raw_pressure() {
return RawPress;
}
int32_t AP_Baro_BMP085::get_raw_temp() {
return RawTemp;
}
// Private functions: /////////////////////////////////////////////////////////
// Send command to Read Pressure
void AP_Baro_BMP085::Command_ReadPress()
{
if (I2c.write(BMP085_ADDRESS, 0xF4, 0x34+(oss << 6)) != 0) {
healthy = false;
}
}
// Read Raw Pressure values
void AP_Baro_BMP085::ReadPress()
{
uint8_t buf[3];
if (I2c.read(BMP085_ADDRESS, 0xF6, 3, buf) != 0) {
healthy = false;
return;
}
RawPress = (((long)buf[0] << 16) | ((long)buf[1] << 8) | ((long)buf[2])) >> (8 - oss);
if(_offset_press == 0){
_offset_press = RawPress;
RawPress = 0;
} else{
RawPress -= _offset_press;
}
// filter
_press_filter[_press_index++] = RawPress;
if(_press_index >= PRESS_FILTER_SIZE)
_press_index = 0;
RawPress = 0;
// sum our filter
for (uint8_t i = 0; i < PRESS_FILTER_SIZE; i++){
RawPress += _press_filter[i];
}
// grab result
RawPress /= PRESS_FILTER_SIZE;
//RawPress >>= 3;
RawPress += _offset_press;
}
// Send Command to Read Temperature
void AP_Baro_BMP085::Command_ReadTemp()
{
if (I2c.write(BMP085_ADDRESS, 0xF4, 0x2E) != 0) {
healthy = false;
}
}
// Read Raw Temperature values
void AP_Baro_BMP085::ReadTemp()
{
uint8_t buf[2];
if (I2c.read(BMP085_ADDRESS, 0xF6, 2, buf) != 0) {
healthy = false;
return;
}
RawTemp = buf[0];
RawTemp = (RawTemp << 8) | buf[1];
if (_offset_temp == 0){
_offset_temp = RawTemp;
RawTemp = 0;
} else {
RawTemp -= _offset_temp;
}
// filter
_temp_filter[_temp_index++] = RawTemp;
if(_temp_index >= TEMP_FILTER_SIZE)
_temp_index = 0;
RawTemp = 0;
// sum our filter
for(uint8_t i = 0; i < TEMP_FILTER_SIZE; i++){
RawTemp += _temp_filter[i];
}
// grab result
RawTemp /= TEMP_FILTER_SIZE;
//RawTemp >>= 4;
RawTemp += _offset_temp;
}
// Calculate Temperature and Pressure in real units.
void AP_Baro_BMP085::Calculate()
{
long x1, x2, x3, b3, b5, b6, p;
unsigned long b4, b7;
int32_t tmp;
// See Datasheet page 13 for this formulas
// Based also on Jee Labs BMP085 example code. Thanks for share.
// Temperature calculations
x1 = ((long)RawTemp - ac6) * ac5 >> 15;
x2 = ((long) mc << 11) / (x1 + md);
b5 = x1 + x2;
Temp = (b5 + 8) >> 4;
// Pressure calculations
b6 = b5 - 4000;
x1 = (b2 * (b6 * b6 >> 12)) >> 11;
x2 = ac2 * b6 >> 11;
x3 = x1 + x2;
//b3 = (((int32_t) ac1 * 4 + x3)<<oss + 2) >> 2; // BAD
//b3 = ((int32_t) ac1 * 4 + x3 + 2) >> 2; //OK for oss=0
tmp = ac1;
tmp = (tmp*4 + x3)<<oss;
b3 = (tmp+2)/4;
x1 = ac3 * b6 >> 13;
x2 = (b1 * (b6 * b6 >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
b4 = (ac4 * (uint32_t) (x3 + 32768)) >> 15;
b7 = ((uint32_t) RawPress - b3) * (50000 >> oss);
p = b7 < 0x80000000 ? (b7 * 2) / b4 : (b7 / b4) * 2;
x1 = (p >> 8) * (p >> 8);
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
Press = p + ((x1 + x2 + 3791) >> 4);
}