mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-05 07:28:29 -04:00
303 lines
10 KiB
Plaintext
303 lines
10 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
// update_navigation - invokes navigation routines
|
|
// called at 10hz
|
|
static void update_navigation()
|
|
{
|
|
static uint32_t nav_last_update = 0; // the system time of the last time nav was run update
|
|
|
|
// exit immediately if not auto_armed
|
|
if (!ap.auto_armed) {
|
|
return;
|
|
}
|
|
|
|
// check for inertial nav updates
|
|
if( inertial_nav.position_ok() ) {
|
|
|
|
// calculate time since nav controllers last ran
|
|
dTnav = (float)(millis() - nav_last_update)/ 1000.0f;
|
|
nav_last_update = millis();
|
|
|
|
// prevent runnup in dTnav value
|
|
dTnav = min(dTnav, 1.0f);
|
|
|
|
// run the navigation controllers
|
|
update_nav_mode();
|
|
}
|
|
}
|
|
|
|
// run_nav_updates - top level call for the autopilot
|
|
// ensures calculations such as "distance to waypoint" are calculated before autopilot makes decisions
|
|
// To-Do - rename and move this function to make it's purpose more clear
|
|
static void run_nav_updates(void)
|
|
{
|
|
// fetch position from inertial navigation
|
|
calc_position();
|
|
|
|
// calculate distance and bearing for reporting and autopilot decisions
|
|
calc_distance_and_bearing();
|
|
|
|
// run autopilot to make high level decisions about control modes
|
|
run_autopilot();
|
|
}
|
|
|
|
// calc_position - get lat and lon positions from inertial nav library
|
|
static void calc_position(){
|
|
if( inertial_nav.position_ok() ) {
|
|
// pull position from interial nav library
|
|
current_loc.lng = inertial_nav.get_longitude();
|
|
current_loc.lat = inertial_nav.get_latitude();
|
|
}
|
|
}
|
|
|
|
// calc_distance_and_bearing - calculate distance and direction to waypoints for reporting and autopilot decisions
|
|
static void calc_distance_and_bearing()
|
|
{
|
|
Vector3f curr = inertial_nav.get_position();
|
|
|
|
// get target from loiter or wpinav controller
|
|
if( nav_mode == NAV_LOITER || nav_mode == NAV_CIRCLE ) {
|
|
wp_distance = wp_nav.get_distance_to_target();
|
|
wp_bearing = wp_nav.get_bearing_to_target();
|
|
}else if( nav_mode == NAV_WP ) {
|
|
wp_distance = wp_nav.get_distance_to_destination();
|
|
wp_bearing = wp_nav.get_bearing_to_destination();
|
|
}else{
|
|
wp_distance = 0;
|
|
wp_bearing = 0;
|
|
}
|
|
|
|
// calculate home distance and bearing
|
|
if( ap.home_is_set && (g_gps->status() == GPS::GPS_OK_FIX_3D || g_gps->status() == GPS::GPS_OK_FIX_2D)) {
|
|
home_distance = pythagorous2(curr.x, curr.y);
|
|
home_bearing = pv_get_bearing_cd(curr,Vector3f(0,0,0));
|
|
|
|
// update super simple bearing (if required) because it relies on home_bearing
|
|
update_super_simple_bearing();
|
|
}else{
|
|
home_distance = 0;
|
|
home_bearing = 0;
|
|
}
|
|
}
|
|
|
|
// run_autopilot - highest level call to process mission commands
|
|
static void run_autopilot()
|
|
{
|
|
switch( control_mode ) {
|
|
case AUTO:
|
|
// load the next command if the command queues are empty
|
|
update_commands();
|
|
|
|
// process the active navigation and conditional commands
|
|
verify_commands();
|
|
break;
|
|
case GUIDED:
|
|
// no need to do anything - wp_nav should take care of getting us to the desired location
|
|
break;
|
|
case RTL:
|
|
verify_RTL();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// set_nav_mode - update nav mode and initialise any variables as required
|
|
static bool set_nav_mode(uint8_t new_nav_mode)
|
|
{
|
|
bool nav_initialised = false; // boolean to ensure proper initialisation of nav modes
|
|
Vector3f stopping_point; // stopping point for circle mode
|
|
|
|
// return immediately if no change
|
|
if( new_nav_mode == nav_mode ) {
|
|
return true;
|
|
}
|
|
|
|
switch( new_nav_mode ) {
|
|
|
|
case NAV_NONE:
|
|
nav_initialised = true;
|
|
break;
|
|
|
|
case NAV_CIRCLE:
|
|
// set center of circle to current position
|
|
wp_nav.get_stopping_point(inertial_nav.get_position(),inertial_nav.get_velocity(),stopping_point);
|
|
circle_set_center(stopping_point,ahrs.yaw);
|
|
nav_initialised = true;
|
|
break;
|
|
|
|
case NAV_LOITER:
|
|
// set target to current position
|
|
wp_nav.init_loiter_target(inertial_nav.get_position(), inertial_nav.get_velocity());
|
|
nav_initialised = true;
|
|
break;
|
|
|
|
case NAV_WP:
|
|
nav_initialised = true;
|
|
break;
|
|
}
|
|
|
|
// if initialisation has been successful update the yaw mode
|
|
if( nav_initialised ) {
|
|
nav_mode = new_nav_mode;
|
|
}
|
|
|
|
// return success or failure
|
|
return nav_initialised;
|
|
}
|
|
|
|
// update_nav_mode - run navigation controller based on nav_mode
|
|
static void update_nav_mode()
|
|
{
|
|
switch( nav_mode ) {
|
|
|
|
case NAV_NONE:
|
|
// do nothing
|
|
break;
|
|
|
|
case NAV_CIRCLE:
|
|
// call circle controller which in turn calls loiter controller
|
|
update_circle(dTnav);
|
|
break;
|
|
|
|
case NAV_LOITER:
|
|
// reset target if we are still on the ground
|
|
if (ap.land_complete) {
|
|
wp_nav.init_loiter_target(inertial_nav.get_position(),inertial_nav.get_velocity());
|
|
}
|
|
// call loiter controller
|
|
wp_nav.update_loiter();
|
|
break;
|
|
|
|
case NAV_WP:
|
|
// call waypoint controller
|
|
wp_nav.update_wpnav();
|
|
break;
|
|
}
|
|
|
|
// log to dataflash
|
|
if ((g.log_bitmask & MASK_LOG_NTUN) && nav_mode != NAV_NONE) {
|
|
Log_Write_Nav_Tuning();
|
|
}
|
|
|
|
/*
|
|
// To-Do: check that we haven't broken toy mode
|
|
case TOY_A:
|
|
case TOY_M:
|
|
set_nav_mode(NAV_NONE);
|
|
update_nav_wp();
|
|
break;
|
|
}
|
|
*/
|
|
}
|
|
|
|
// Keeps old data out of our calculation / logs
|
|
static void reset_nav_params(void)
|
|
{
|
|
// Will be set by new command
|
|
wp_bearing = 0;
|
|
|
|
// Will be set by new command
|
|
wp_distance = 0;
|
|
|
|
// Will be set by nav or loiter controllers
|
|
lon_error = 0;
|
|
lat_error = 0;
|
|
nav_roll = 0;
|
|
nav_pitch = 0;
|
|
}
|
|
|
|
// get_yaw_slew - reduces rate of change of yaw to a maximum
|
|
// assumes it is called at 100hz so centi-degrees and update rate cancel each other out
|
|
static int32_t get_yaw_slew(int32_t current_yaw, int32_t desired_yaw, int16_t deg_per_sec)
|
|
{
|
|
return wrap_360_cd(current_yaw + constrain_int16(wrap_180_cd(desired_yaw - current_yaw), -deg_per_sec, deg_per_sec));
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////
|
|
// circle navigation controller
|
|
//////////////////////////////////////////////////////////
|
|
|
|
// circle_set_center -- set circle controller's center position and starting angle
|
|
static void
|
|
circle_set_center(const Vector3f current_position, float heading_in_radians)
|
|
{
|
|
float max_velocity;
|
|
float cir_radius = g.circle_radius * 100;
|
|
|
|
// set circle center to circle_radius ahead of current position
|
|
circle_center.x = current_position.x + cir_radius * cos_yaw;
|
|
circle_center.y = current_position.y + cir_radius * sin_yaw;
|
|
|
|
// if we are doing a panorama set the circle_angle to the current heading
|
|
if( g.circle_radius <= 0 ) {
|
|
circle_angle = heading_in_radians;
|
|
circle_angular_velocity_max = ToRad(g.circle_rate);
|
|
circle_angular_acceleration = circle_angular_velocity_max; // reach maximum yaw velocity in 1 second
|
|
}else{
|
|
// set starting angle to current heading - 180 degrees
|
|
circle_angle = wrap_PI(heading_in_radians-PI);
|
|
|
|
// calculate max velocity based on waypoint speed ensuring we do not use more than half our max acceleration for accelerating towards the center of the circle
|
|
max_velocity = min(wp_nav.get_horizontal_velocity(), safe_sqrt(0.5f*wp_nav.get_waypoint_acceleration()*g.circle_radius*100.0f));
|
|
|
|
// angular_velocity in radians per second
|
|
circle_angular_velocity_max = max_velocity/((float)g.circle_radius * 100.0f);
|
|
circle_angular_velocity_max = constrain_float(ToRad(g.circle_rate),-circle_angular_velocity_max,circle_angular_velocity_max);
|
|
|
|
// angular_velocity in radians per second
|
|
circle_angular_acceleration = wp_nav.get_waypoint_acceleration()/((float)g.circle_radius * 100);
|
|
if (g.circle_rate < 0.0f) {
|
|
circle_angular_acceleration = -circle_angular_acceleration;
|
|
}
|
|
}
|
|
|
|
// initialise other variables
|
|
circle_angle_total = 0;
|
|
circle_angular_velocity = 0;
|
|
|
|
// initialise loiter target. Note: feed forward velocity set to zero
|
|
wp_nav.init_loiter_target(current_position, Vector3f(0,0,0));
|
|
}
|
|
|
|
// update_circle - circle position controller's main call which in turn calls loiter controller with updated target position
|
|
static void
|
|
update_circle(float dt)
|
|
{
|
|
float cir_radius = g.circle_radius * 100;
|
|
Vector3f circle_target;
|
|
|
|
// ramp up angular velocity to maximum
|
|
if (g.circle_rate >= 0) {
|
|
if (circle_angular_velocity < circle_angular_velocity_max) {
|
|
circle_angular_velocity += circle_angular_acceleration * dt;
|
|
circle_angular_velocity = constrain_float(circle_angular_velocity, 0, circle_angular_velocity_max);
|
|
}
|
|
}else{
|
|
if (circle_angular_velocity > circle_angular_velocity_max) {
|
|
circle_angular_velocity += circle_angular_acceleration * dt;
|
|
circle_angular_velocity = constrain_float(circle_angular_velocity, circle_angular_velocity_max, 0);
|
|
}
|
|
}
|
|
|
|
// update the target angle
|
|
circle_angle += circle_angular_velocity * dt;
|
|
circle_angle = wrap_PI(circle_angle);
|
|
|
|
// update the total angle travelled
|
|
circle_angle_total += circle_angular_velocity * dt;
|
|
|
|
// if the circle_radius is zero we are doing panorama so no need to update loiter target
|
|
if( g.circle_radius != 0.0 ) {
|
|
// calculate target position
|
|
circle_target.x = circle_center.x + cir_radius * cosf(-circle_angle);
|
|
circle_target.y = circle_center.y - cir_radius * sinf(-circle_angle);
|
|
circle_target.z = wp_nav.get_desired_alt();
|
|
|
|
// re-use loiter position controller
|
|
wp_nav.set_loiter_target(circle_target);
|
|
}
|
|
|
|
// call loiter controller
|
|
wp_nav.update_loiter();
|
|
}
|