mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
b511410b48
We are starting the process of resolving all the warnings in the ardupilot builds of all vehicles and platforms.
636 lines
19 KiB
C++
636 lines
19 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Coded by Víctor Mayoral Vilches <v.mayoralv@gmail.com> using
|
|
* l3gd20.cpp <https://github.com/diydrones/PX4Firmware> from the PX4 Development Team.
|
|
*
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#include <AP_HAL.h>
|
|
#if defined(NOT_YET)
|
|
|
|
#include "AP_InertialSensor_L3GD20.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
#define L3GD20_DRDY_PIN 70
|
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLE || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF
|
|
#include "../AP_HAL_Linux/GPIO.h"
|
|
#define L3GD20_DRDY_PIN BBB_P8_34 // GYRO_DRDY
|
|
#endif
|
|
#endif
|
|
|
|
/* L3GD20 definitions */
|
|
/* Orientation on board */
|
|
#define SENSOR_BOARD_ROTATION_000_DEG 0
|
|
#define SENSOR_BOARD_ROTATION_090_DEG 1
|
|
#define SENSOR_BOARD_ROTATION_180_DEG 2
|
|
#define SENSOR_BOARD_ROTATION_270_DEG 3
|
|
|
|
/* SPI protocol address bits */
|
|
#define DIR_READ (1<<7)
|
|
#define DIR_WRITE (0<<7)
|
|
#define ADDR_INCREMENT (1<<6)
|
|
|
|
/* register addresses */
|
|
#define ADDR_WHO_AM_I 0x0F
|
|
#define WHO_I_AM_H 0xD7
|
|
#define WHO_I_AM 0xD4
|
|
|
|
#define ADDR_CTRL_REG1 0x20
|
|
#define REG1_RATE_LP_MASK 0xF0 /* Mask to guard partial register update */
|
|
/* keep lowpass low to avoid noise issues */
|
|
#define RATE_95HZ_LP_25HZ ((0<<7) | (0<<6) | (0<<5) | (1<<4))
|
|
#define RATE_190HZ_LP_25HZ ((0<<7) | (1<<6) | (0<<5) | (1<<4))
|
|
#define RATE_190HZ_LP_50HZ ((0<<7) | (1<<6) | (1<<5) | (0<<4))
|
|
#define RATE_190HZ_LP_70HZ ((0<<7) | (1<<6) | (1<<5) | (1<<4))
|
|
#define RATE_380HZ_LP_20HZ ((1<<7) | (0<<6) | (1<<5) | (0<<4))
|
|
#define RATE_380HZ_LP_25HZ ((1<<7) | (0<<6) | (0<<5) | (1<<4))
|
|
#define RATE_380HZ_LP_50HZ ((1<<7) | (0<<6) | (1<<5) | (0<<4))
|
|
#define RATE_380HZ_LP_100HZ ((1<<7) | (0<<6) | (1<<5) | (1<<4))
|
|
#define RATE_760HZ_LP_30HZ ((1<<7) | (1<<6) | (0<<5) | (0<<4))
|
|
#define RATE_760HZ_LP_35HZ ((1<<7) | (1<<6) | (0<<5) | (1<<4))
|
|
#define RATE_760HZ_LP_50HZ ((1<<7) | (1<<6) | (1<<5) | (0<<4))
|
|
#define RATE_760HZ_LP_100HZ ((1<<7) | (1<<6) | (1<<5) | (1<<4))
|
|
|
|
#define ADDR_CTRL_REG2 0x21
|
|
#define ADDR_CTRL_REG3 0x22
|
|
#define ADDR_CTRL_REG4 0x23
|
|
#define REG4_RANGE_MASK 0x30 /* Mask to guard partial register update */
|
|
#define RANGE_250DPS (0<<4)
|
|
#define RANGE_500DPS (1<<4)
|
|
#define RANGE_2000DPS (3<<4)
|
|
|
|
#define ADDR_CTRL_REG5 0x24
|
|
#define ADDR_REFERENCE 0x25
|
|
#define ADDR_OUT_TEMP 0x26
|
|
#define ADDR_STATUS_REG 0x27
|
|
#define ADDR_OUT_X_L 0x28
|
|
#define ADDR_OUT_X_H 0x29
|
|
#define ADDR_OUT_Y_L 0x2A
|
|
#define ADDR_OUT_Y_H 0x2B
|
|
#define ADDR_OUT_Z_L 0x2C
|
|
#define ADDR_OUT_Z_H 0x2D
|
|
#define ADDR_FIFO_CTRL_REG 0x2E
|
|
#define ADDR_FIFO_SRC_REG 0x2F
|
|
#define ADDR_INT1_CFG 0x30
|
|
#define ADDR_INT1_SRC 0x31
|
|
#define ADDR_INT1_TSH_XH 0x32
|
|
#define ADDR_INT1_TSH_XL 0x33
|
|
#define ADDR_INT1_TSH_YH 0x34
|
|
#define ADDR_INT1_TSH_YL 0x35
|
|
#define ADDR_INT1_TSH_ZH 0x36
|
|
#define ADDR_INT1_TSH_ZL 0x37
|
|
#define ADDR_INT1_DURATION 0x38
|
|
|
|
/* Internal configuration values */
|
|
#define REG1_POWER_NORMAL (1<<3)
|
|
#define REG1_Z_ENABLE (1<<2)
|
|
#define REG1_Y_ENABLE (1<<1)
|
|
#define REG1_X_ENABLE (1<<0)
|
|
|
|
#define REG4_BDU (1<<7)
|
|
#define REG4_BLE (1<<6)
|
|
//#define REG4_SPI_3WIRE (1<<0)
|
|
|
|
#define REG5_FIFO_ENABLE (1<<6)
|
|
#define REG5_REBOOT_MEMORY (1<<7)
|
|
|
|
#define STATUS_ZYXOR (1<<7)
|
|
#define STATUS_ZOR (1<<6)
|
|
#define STATUS_YOR (1<<5)
|
|
#define STATUS_XOR (1<<4)
|
|
#define STATUS_ZYXDA (1<<3)
|
|
#define STATUS_ZDA (1<<2)
|
|
#define STATUS_YDA (1<<1)
|
|
#define STATUS_XDA (1<<0)
|
|
|
|
#define FIFO_CTRL_BYPASS_MODE (0<<5)
|
|
#define FIFO_CTRL_FIFO_MODE (1<<5)
|
|
#define FIFO_CTRL_STREAM_MODE (1<<6)
|
|
#define FIFO_CTRL_STREAM_TO_FIFO_MODE (3<<5)
|
|
#define FIFO_CTRL_BYPASS_TO_STREAM_MODE (1<<7)
|
|
|
|
#define L3GD20_DEFAULT_RATE 760
|
|
#define L3GD20_DEFAULT_RANGE_DPS 2000
|
|
#define L3GD20_DEFAULT_FILTER_FREQ 30
|
|
|
|
|
|
// const float AP_InertialSensor_L3GD20::_gyro_scale = (0.0174532f / 16.4f);
|
|
|
|
|
|
AP_InertialSensor_L3GD20::AP_InertialSensor_L3GD20() :
|
|
AP_InertialSensor(),
|
|
_drdy_pin(NULL),
|
|
_initialised(false),
|
|
_L3GD20_product_id(AP_PRODUCT_ID_NONE)
|
|
{
|
|
}
|
|
|
|
uint16_t AP_InertialSensor_L3GD20::_init_sensor( Sample_rate sample_rate )
|
|
{
|
|
if (_initialised) return _L3GD20_product_id;
|
|
_initialised = true;
|
|
|
|
_spi = hal.spi->device(AP_HAL::SPIDevice_L3GD20);
|
|
_spi_sem = _spi->get_semaphore();
|
|
|
|
#ifdef L3GD20_DRDY_PIN
|
|
_drdy_pin = hal.gpio->channel(L3GD20_DRDY_PIN);
|
|
_drdy_pin->mode(HAL_GPIO_INPUT);
|
|
#endif
|
|
|
|
hal.scheduler->suspend_timer_procs();
|
|
|
|
// Test WHOAMI
|
|
uint8_t whoami = _register_read(ADDR_WHO_AM_I);
|
|
if (whoami != WHO_I_AM) {
|
|
// TODO: we should probably accept multiple chip
|
|
// revisions. This is the one on the PXF
|
|
hal.console->printf("L3GD20: unexpected WHOAMI 0x%x\n", (unsigned)whoami);
|
|
hal.scheduler->panic(PSTR("L3GD20: bad WHOAMI"));
|
|
}
|
|
|
|
uint8_t tries = 0;
|
|
do {
|
|
bool success = _hardware_init(sample_rate);
|
|
if (success) {
|
|
hal.scheduler->delay(5+2);
|
|
if (!_spi_sem->take(100)) {
|
|
hal.scheduler->panic(PSTR("L3GD20: Unable to get semaphore"));
|
|
}
|
|
if (_data_ready()) {
|
|
_spi_sem->give();
|
|
break;
|
|
} else {
|
|
hal.console->println_P(
|
|
PSTR("L3GD20 startup failed: no data ready"));
|
|
}
|
|
_spi_sem->give();
|
|
}
|
|
if (tries++ > 5) {
|
|
hal.scheduler->panic(PSTR("PANIC: failed to boot L3GD20 5 times"));
|
|
}
|
|
} while (1);
|
|
|
|
hal.scheduler->resume_timer_procs();
|
|
|
|
|
|
/* read the first lot of data.
|
|
* _read_data_transaction requires the spi semaphore to be taken by
|
|
* its caller. */
|
|
_last_sample_time_micros = hal.scheduler->micros();
|
|
hal.scheduler->delay(10);
|
|
if (_spi_sem->take(100)) {
|
|
_read_data_transaction();
|
|
_spi_sem->give();
|
|
}
|
|
|
|
// start the timer process to read samples
|
|
hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_L3GD20::_poll_data));
|
|
|
|
#if L3GD20_DEBUG
|
|
_dump_registers();
|
|
#endif
|
|
return _L3GD20_product_id;
|
|
}
|
|
|
|
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
|
|
|
|
bool AP_InertialSensor_L3GD20::wait_for_sample(uint16_t timeout_ms)
|
|
{
|
|
if (_sample_available()) {
|
|
return true;
|
|
}
|
|
uint32_t start = hal.scheduler->millis();
|
|
while ((hal.scheduler->millis() - start) < timeout_ms) {
|
|
hal.scheduler->delay_microseconds(100);
|
|
if (_sample_available()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AP_InertialSensor_L3GD20::update( void )
|
|
{
|
|
// wait for at least 1 sample
|
|
if (!wait_for_sample(1000)) {
|
|
return false;
|
|
}
|
|
|
|
// disable timer procs for mininum time
|
|
hal.scheduler->suspend_timer_procs();
|
|
_gyro[0] = Vector3f(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z);
|
|
_num_samples = _sum_count;
|
|
_gyro_sum.zero();
|
|
_sum_count = 0;
|
|
hal.scheduler->resume_timer_procs();
|
|
|
|
_gyro[0].rotate(_board_orientation);
|
|
_gyro[0] *= _gyro_scale / _num_samples;
|
|
_gyro[0] -= _gyro_offset[0];
|
|
|
|
// if (_last_filter_hz != _L3GD20_filter) {
|
|
// if (_spi_sem->take(10)) {
|
|
// _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
|
|
// _set_filter_register(_L3GD20_filter, 0);
|
|
// _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
|
|
// _error_count = 0;
|
|
// _spi_sem->give();
|
|
// }
|
|
// }
|
|
|
|
return true;
|
|
}
|
|
|
|
/*================ HARDWARE FUNCTIONS ==================== */
|
|
|
|
/**
|
|
* Return true if the L3GD20 has new data available for reading.
|
|
*
|
|
* We use the data ready pin if it is available. Otherwise, read the
|
|
* status register.
|
|
*/
|
|
bool AP_InertialSensor_L3GD20::_data_ready()
|
|
{
|
|
if (_drdy_pin) {
|
|
return _drdy_pin->read() != 0;
|
|
}
|
|
// TODO: read status register
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Timer process to poll for new data from the L3GD20.
|
|
*/
|
|
void AP_InertialSensor_L3GD20::_poll_data(void)
|
|
{
|
|
if (hal.scheduler->in_timerprocess()) {
|
|
if (!_spi_sem->take_nonblocking()) {
|
|
/*
|
|
the semaphore being busy is an expected condition when the
|
|
mainline code is calling wait_for_sample() which will
|
|
grab the semaphore. We return now and rely on the mainline
|
|
code grabbing the latest sample.
|
|
*/
|
|
return;
|
|
}
|
|
if (_data_ready()) {
|
|
_last_sample_time_micros = hal.scheduler->micros();
|
|
_read_data_transaction();
|
|
}
|
|
_spi_sem->give();
|
|
} else {
|
|
/* Synchronous read - take semaphore */
|
|
if (_spi_sem->take(10)) {
|
|
if (_data_ready()) {
|
|
_last_sample_time_micros = hal.scheduler->micros();
|
|
_read_data_transaction();
|
|
}
|
|
_spi_sem->give();
|
|
} else {
|
|
hal.scheduler->panic(
|
|
PSTR("PANIC: AP_InertialSensor_L3GD20::_poll_data "
|
|
"failed to take SPI semaphore synchronously"));
|
|
}
|
|
}
|
|
}
|
|
|
|
void AP_InertialSensor_L3GD20::_read_data_transaction() {
|
|
|
|
struct {
|
|
uint8_t cmd;
|
|
uint8_t temp;
|
|
uint8_t status;
|
|
int16_t x;
|
|
int16_t y;
|
|
int16_t z;
|
|
} raw_report;
|
|
|
|
/* fetch data from the sensor */
|
|
memset(&raw_report, 0, sizeof(raw_report));
|
|
raw_report.cmd = ADDR_OUT_TEMP | DIR_READ | ADDR_INCREMENT;
|
|
_spi->transaction((uint8_t *)&raw_report, (uint8_t *)&raw_report, sizeof(raw_report));
|
|
|
|
#if L3GD20_USE_DRDY
|
|
if ((raw_report.status & 0xF) != 0xF) {
|
|
/*
|
|
we waited for DRDY, but did not see DRDY on all axes
|
|
when we captured. That means a transfer error of some sort
|
|
*/
|
|
hal.console->println_P(
|
|
PSTR("L3GD20: DRDY is not on in all axes, transfer error"));
|
|
return;
|
|
}
|
|
#endif
|
|
_gyro_sum.x += raw_report.x;
|
|
_gyro_sum.y += raw_report.y;
|
|
_gyro_sum.z -= raw_report.z;
|
|
_sum_count++;
|
|
|
|
if (_sum_count == 0) {
|
|
// rollover - v unlikely
|
|
_gyro_sum.zero();
|
|
}
|
|
}
|
|
|
|
uint8_t AP_InertialSensor_L3GD20::_register_read( uint8_t reg )
|
|
{
|
|
uint8_t addr = reg | 0x80; // Set most significant bit
|
|
|
|
uint8_t tx[2];
|
|
uint8_t rx[2];
|
|
|
|
tx[0] = addr;
|
|
tx[1] = 0;
|
|
_spi->transaction(tx, rx, 2);
|
|
|
|
return rx[1];
|
|
}
|
|
|
|
void AP_InertialSensor_L3GD20::_register_write(uint8_t reg, uint8_t val)
|
|
{
|
|
uint8_t tx[2];
|
|
uint8_t rx[2];
|
|
|
|
tx[0] = reg;
|
|
tx[1] = val;
|
|
_spi->transaction(tx, rx, 2);
|
|
}
|
|
|
|
/*
|
|
useful when debugging SPI bus errors
|
|
*/
|
|
void AP_InertialSensor_L3GD20::_register_write_check(uint8_t reg, uint8_t val)
|
|
{
|
|
uint8_t readed;
|
|
_register_write(reg, val);
|
|
readed = _register_read(reg);
|
|
if (readed != val){
|
|
hal.console->printf_P(PSTR("Values doesn't match; written: %02x; read: %02x "), val, readed);
|
|
}
|
|
#if L3GD20_DEBUG
|
|
hal.console->printf_P(PSTR("Values written: %02x; readed: %02x "), val, readed);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
set the DLPF filter frequency. Assumes caller has taken semaphore
|
|
TODO needs to be changed according to L3GD20 needs
|
|
*/
|
|
// void AP_InertialSensor_L3GD20::_set_filter_register(uint8_t filter_hz, uint8_t default_filter)
|
|
// {
|
|
// uint8_t filter = default_filter;
|
|
// // choose filtering frequency
|
|
// switch (filter_hz) {
|
|
// case 5:
|
|
// filter = BITS_DLPF_CFG_5HZ;
|
|
// break;
|
|
// case 10:
|
|
// filter = BITS_DLPF_CFG_10HZ;
|
|
// break;
|
|
// case 20:
|
|
// filter = BITS_DLPF_CFG_20HZ;
|
|
// break;
|
|
// case 42:
|
|
// filter = BITS_DLPF_CFG_42HZ;
|
|
// break;
|
|
// case 98:
|
|
// filter = BITS_DLPF_CFG_98HZ;
|
|
// break;
|
|
// }
|
|
|
|
// if (filter != 0) {
|
|
// _last_filter_hz = filter_hz;
|
|
// _register_write(MPUREG_CONFIG, filter);
|
|
// }
|
|
// }
|
|
|
|
|
|
void AP_InertialSensor_L3GD20::disable_i2c(void)
|
|
{
|
|
uint8_t retries = 10;
|
|
while (retries--) {
|
|
// add retries
|
|
uint8_t a = _register_read(0x05);
|
|
_register_write(0x05, (0x20 | a));
|
|
if (_register_read(0x05) == (a | 0x20)) {
|
|
return;
|
|
}
|
|
}
|
|
hal.scheduler->panic(PSTR("L3GD20: Unable to disable I2C"));
|
|
}
|
|
|
|
uint8_t AP_InertialSensor_L3GD20::set_samplerate(uint16_t frequency)
|
|
{
|
|
uint8_t bits = REG1_POWER_NORMAL | REG1_Z_ENABLE | REG1_Y_ENABLE | REG1_X_ENABLE;
|
|
if (frequency == 0)
|
|
frequency = 760;
|
|
|
|
/* use limits good for H or non-H models */
|
|
if (frequency <= 100) {
|
|
// _current_rate = 95;
|
|
bits |= RATE_95HZ_LP_25HZ;
|
|
|
|
} else if (frequency <= 200) {
|
|
// _current_rate = 190;
|
|
bits |= RATE_190HZ_LP_50HZ;
|
|
|
|
} else if (frequency <= 400) {
|
|
// _current_rate = 380;
|
|
bits |= RATE_380HZ_LP_50HZ;
|
|
|
|
} else if (frequency <= 800) {
|
|
// _current_rate = 760;
|
|
bits |= RATE_760HZ_LP_50HZ;
|
|
} else {
|
|
return -1;
|
|
}
|
|
_register_write(ADDR_CTRL_REG1, bits);
|
|
return 0;
|
|
}
|
|
|
|
uint8_t AP_InertialSensor_L3GD20::set_range(uint8_t max_dps)
|
|
{
|
|
uint8_t bits = REG4_BDU;
|
|
float new_range_scale_dps_digit;
|
|
float new_range;
|
|
|
|
if (max_dps == 0) {
|
|
max_dps = 2000;
|
|
}
|
|
if (max_dps <= 250) {
|
|
new_range = 250;
|
|
bits |= RANGE_250DPS;
|
|
new_range_scale_dps_digit = 8.75e-3f;
|
|
|
|
} else if (max_dps <= 500) {
|
|
new_range = 500;
|
|
bits |= RANGE_500DPS;
|
|
new_range_scale_dps_digit = 17.5e-3f;
|
|
|
|
} else if (max_dps <= 2000) {
|
|
new_range = 2000;
|
|
bits |= RANGE_2000DPS;
|
|
new_range_scale_dps_digit = 70e-3f;
|
|
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
// _gyro_range_rad_s = new_range / 180.0f * M_PI_F;
|
|
// _gyro_range_scale = new_range_scale_dps_digit / 180.0f * M_PI_F;
|
|
_gyro_scale = new_range_scale_dps_digit / 180.0f * M_PI_F;
|
|
_register_write(ADDR_CTRL_REG4, bits);
|
|
return 0;
|
|
}
|
|
|
|
bool AP_InertialSensor_L3GD20::_hardware_init(Sample_rate sample_rate)
|
|
{
|
|
if (!_spi_sem->take(100)) {
|
|
hal.scheduler->panic(PSTR("L3GD20: Unable to get semaphore"));
|
|
}
|
|
|
|
// initially run the bus at low speed
|
|
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
|
|
|
|
// ensure the chip doesn't interpret any other bus traffic as I2C
|
|
disable_i2c();
|
|
|
|
// Chip reset
|
|
/* set default configuration */
|
|
_register_write(ADDR_CTRL_REG1, REG1_POWER_NORMAL | REG1_Z_ENABLE | REG1_Y_ENABLE | REG1_X_ENABLE);
|
|
hal.scheduler->delay(1);
|
|
_register_write(ADDR_CTRL_REG2, 0); /* disable high-pass filters */
|
|
hal.scheduler->delay(1);
|
|
_register_write(ADDR_CTRL_REG3, 0x08); /* DRDY enable */
|
|
hal.scheduler->delay(1);
|
|
_register_write(ADDR_CTRL_REG4, REG4_BDU);
|
|
hal.scheduler->delay(1);
|
|
_register_write(ADDR_CTRL_REG5, 0);
|
|
hal.scheduler->delay(1);
|
|
|
|
_register_write(ADDR_CTRL_REG5, REG5_FIFO_ENABLE); /* disable wake-on-interrupt */
|
|
hal.scheduler->delay(1);
|
|
|
|
/* disable FIFO. This makes things simpler and ensures we
|
|
* aren't getting stale data. It means we must run the hrt
|
|
* callback fast enough to not miss data. */
|
|
_register_write(ADDR_FIFO_CTRL_REG, FIFO_CTRL_BYPASS_MODE);
|
|
hal.scheduler->delay(1);
|
|
|
|
set_samplerate(0); // 760Hz
|
|
hal.scheduler->delay(1);
|
|
set_range(L3GD20_DEFAULT_RANGE_DPS);
|
|
hal.scheduler->delay(1);
|
|
|
|
// //TODO: Filtering
|
|
// uint8_t default_filter;
|
|
|
|
// // sample rate and filtering
|
|
// // to minimise the effects of aliasing we choose a filter
|
|
// // that is less than half of the sample rate
|
|
// switch (sample_rate) {
|
|
// case RATE_50HZ:
|
|
// // this is used for plane and rover, where noise resistance is
|
|
// // more important than update rate. Tests on an aerobatic plane
|
|
// // show that 10Hz is fine, and makes it very noise resistant
|
|
// default_filter = BITS_DLPF_CFG_10HZ;
|
|
// _sample_shift = 2;
|
|
// break;
|
|
// case RATE_100HZ:
|
|
// default_filter = BITS_DLPF_CFG_20HZ;
|
|
// _sample_shift = 1;
|
|
// break;
|
|
// case RATE_200HZ:
|
|
// default:
|
|
// default_filter = BITS_DLPF_CFG_20HZ;
|
|
// _sample_shift = 0;
|
|
// break;
|
|
// }
|
|
// _set_filter_register(_L3GD20_filter, default_filter);
|
|
|
|
// now that we have initialised, we set the SPI bus speed to high
|
|
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
|
|
_spi_sem->give();
|
|
|
|
return true;
|
|
}
|
|
|
|
// return the MPU6k gyro drift rate in radian/s/s
|
|
// note that this is much better than the oilpan gyros
|
|
float AP_InertialSensor_L3GD20::get_gyro_drift_rate(void)
|
|
{
|
|
// 0.5 degrees/second/minute
|
|
return ToRad(0.5/60);
|
|
}
|
|
|
|
// return true if a sample is available
|
|
bool AP_InertialSensor_L3GD20::_sample_available()
|
|
{
|
|
_poll_data();
|
|
// return (_sum_count >> _sample_shift) > 0;
|
|
return (_sum_count) > 0;
|
|
}
|
|
|
|
|
|
#if L3GD20_DEBUG
|
|
// dump all config registers - used for debug
|
|
void AP_InertialSensor_L3GD20::_dump_registers(void)
|
|
{
|
|
hal.console->println_P(PSTR("L3GD20 registers"));
|
|
if (_spi_sem->take(100)) {
|
|
for (uint8_t reg=ADDR_WHO_AM_I; reg<=56; reg++) { // 0x38 = 56
|
|
uint8_t v = _register_read(reg);
|
|
hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v);
|
|
if ((reg - (ADDR_WHO_AM_I-1)) % 16 == 0) {
|
|
hal.console->println();
|
|
}
|
|
}
|
|
hal.console->println();
|
|
_spi_sem->give();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
// get_delta_time returns the time period in seconds overwhich the sensor data was collected
|
|
float AP_InertialSensor_L3GD20::get_delta_time() const
|
|
{
|
|
// the sensor runs at 200Hz
|
|
return 0.005 * _num_samples;
|
|
}
|
|
#endif
|