ardupilot/libraries/PID/PID.cpp

125 lines
3.5 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file PID.cpp
/// @brief Generic PID algorithm, with EEPROM-backed storage of constants.
#include <math.h>
#include <avr/eeprom.h>
#include "PID.h"
// make the gain array members a little easier to identify
#define _kp _gain_array[0]
#define _ki _gain_array[1]
#define _kd _gain_array[2]
#define _imax _gain_array[3]
long
PID::get_pid(int32_t error, uint16_t dt, float scaler)
{
float output = 0;
float delta_time = (float)dt / 1000.0;
// Compute proportional component
output += error * _kp;
// Compute derivative component if time has elapsed
if (_kd && (dt > 0)) {
float derivative = (error - _last_error) / delta_time;
// discrete low pass filter, cuts out the
// high frequency noise that can drive the controller crazy
derivative = _last_derivative +
((delta_time / (_RC + delta_time)) * (derivative - _last_derivative));
// update state
_last_error = error;
_last_derivative = derivative;
// add in derivative component
output += _kd * derivative;
}
// scale the P and D components
output *= scaler;
// Compute integral component if time has elapsed
if (_ki && (dt > 0)) {
_integrator += (error * _ki) * scaler * delta_time;
if (_integrator < -_imax) {
_integrator = -_imax;
} else if (_integrator > _imax) {
_integrator = _imax;
}
output += _integrator;
}
return output;
}
void
PID::imax(float v)
{
_imax = fabs(v);
}
void
PID::load_gains()
{
switch(_storage)
{
case STORE_OFF:
// load is a NOP if the gain array is managed externally
break;
case STORE_EEPROM_UINT16:
// _kp = (float)(eeprom_read_word((uint16_t *) _address)) / 1000.0;
// _ki = (float)(eeprom_read_word((uint16_t *) (_address + 2))) / 1000.0;
//_kd = (float)(eeprom_read_word((uint16_t *) (_address + 4))) / 1000.0;
//_imax = eeprom_read_word((uint16_t *) (_address + 6)) * 100;
_kp = (float)_ee.read_int(_address) / 1000.0;
_ki = (float)_ee.read_int(_address + 2) / 1000.0;
_kd = (float)_ee.read_int(_address + 4) / 1000.0;
_imax = (float)_ee.read_int(_address + 6) * 100;
break;
case STORE_EEPROM_FLOAT:
//eeprom_read_block((void*)&_kp,(const void*)(_address),sizeof(_kp));
//eeprom_read_block((void*)&_ki,(const void*)(_address+4),sizeof(_ki));
//eeprom_read_block((void*)&_kd,(const void*)(_address+8),sizeof(_kd));
//eeprom_read_block((void*)&_imax,(const void*)(_address+12),sizeof(_imax));
break;
}
}
void
PID::save_gains()
{
switch(_storage)
{
case STORE_OFF:
// save is a NOP if the gain array is managed externally
break;
case STORE_EEPROM_UINT16:
/*
eeprom_write_word((uint16_t *) _address, (int)(_kp * 1000));
eeprom_write_word((uint16_t *) (_address + 2), (int)(_ki * 1000));
eeprom_write_word((uint16_t *) (_address + 4), (int)(_kd * 1000));
eeprom_write_word((uint16_t *) (_address + 6), (int)_imax/100);
*/
_ee.write_int(_address, (int)(_kp * 1000));
_ee.write_int(_address + 2, (int)(_ki * 1000));
_ee.write_int(_address + 4, (int)(_kd * 1000));
_ee.write_int(_address + 6, (int)(_imax /100));
break;
case STORE_EEPROM_FLOAT:
//eeprom_write_block((const void *)&_kp,(void *)(_address),sizeof(_kp));
//eeprom_write_block((const void *)&_ki,(void *)(_address+4),sizeof(_ki));
//eeprom_write_block((const void *)&_kd,(void *)(_address+8),sizeof(_kd));
//eeprom_write_block((const void *)&_imax,(void *)(_address+12),sizeof(_imax));
break;
}
}