mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-05 07:28:29 -04:00
fe06606193
Don't try to pop new IMU data from the buffer unless we have written data. Correct IMU data as soon as it is popped from the buffer
574 lines
27 KiB
C++
574 lines
27 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
||
#include <AP_HAL/AP_HAL.h>
|
||
|
||
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
||
#include "AP_NavEKF2.h"
|
||
#include "AP_NavEKF2_core.h"
|
||
#include <AP_AHRS/AP_AHRS.h>
|
||
#include <AP_Vehicle/AP_Vehicle.h>
|
||
|
||
#include <stdio.h>
|
||
|
||
extern const AP_HAL::HAL& hal;
|
||
|
||
|
||
/********************************************************
|
||
* OPT FLOW AND RANGE FINDER *
|
||
********************************************************/
|
||
|
||
// Read the range finder and take new measurements if available
|
||
// Apply a median filter
|
||
void NavEKF2_core::readRangeFinder(void)
|
||
{
|
||
uint8_t midIndex;
|
||
uint8_t maxIndex;
|
||
uint8_t minIndex;
|
||
// get theoretical correct range when the vehicle is on the ground
|
||
rngOnGnd = frontend->_rng.ground_clearance_cm() * 0.01f;
|
||
|
||
// read range finder at 20Hz
|
||
// TODO better way of knowing if it has new data
|
||
if ((imuSampleTime_ms - lastRngMeasTime_ms) > 50) {
|
||
|
||
// reset the timer used to control the measurement rate
|
||
lastRngMeasTime_ms = imuSampleTime_ms;
|
||
|
||
// store samples and sample time into a ring buffer if valid
|
||
if (frontend->_rng.status() == RangeFinder::RangeFinder_Good) {
|
||
rngMeasIndex ++;
|
||
if (rngMeasIndex > 2) {
|
||
rngMeasIndex = 0;
|
||
}
|
||
storedRngMeasTime_ms[rngMeasIndex] = imuSampleTime_ms - 25;
|
||
storedRngMeas[rngMeasIndex] = frontend->_rng.distance_cm() * 0.01f;
|
||
}
|
||
|
||
// check for three fresh samples
|
||
bool sampleFresh[3];
|
||
for (uint8_t index = 0; index <= 2; index++) {
|
||
sampleFresh[index] = (imuSampleTime_ms - storedRngMeasTime_ms[index]) < 500;
|
||
}
|
||
|
||
// find the median value if we have three fresh samples
|
||
if (sampleFresh[0] && sampleFresh[1] && sampleFresh[2]) {
|
||
if (storedRngMeas[0] > storedRngMeas[1]) {
|
||
minIndex = 1;
|
||
maxIndex = 0;
|
||
} else {
|
||
maxIndex = 0;
|
||
minIndex = 1;
|
||
}
|
||
if (storedRngMeas[2] > storedRngMeas[maxIndex]) {
|
||
midIndex = maxIndex;
|
||
} else if (storedRngMeas[2] < storedRngMeas[minIndex]) {
|
||
midIndex = minIndex;
|
||
} else {
|
||
midIndex = 2;
|
||
}
|
||
rangeDataNew.time_ms = storedRngMeasTime_ms[midIndex];
|
||
// limit the measured range to be no less than the on-ground range
|
||
rangeDataNew.rng = MAX(storedRngMeas[midIndex],rngOnGnd);
|
||
rngValidMeaTime_ms = imuSampleTime_ms;
|
||
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
|
||
storedRange.push(rangeDataNew);
|
||
} else if (!takeOffDetected) {
|
||
// before takeoff we assume on-ground range value if there is no data
|
||
rangeDataNew.time_ms = imuSampleTime_ms;
|
||
rangeDataNew.rng = rngOnGnd;
|
||
rngValidMeaTime_ms = imuSampleTime_ms;
|
||
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
|
||
storedRange.push(rangeDataNew);
|
||
}
|
||
}
|
||
}
|
||
|
||
// write the raw optical flow measurements
|
||
// this needs to be called externally.
|
||
void NavEKF2_core::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas)
|
||
{
|
||
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
|
||
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions:
|
||
// A positive X rate is produced by a positive sensor rotation about the X axis
|
||
// A positive Y rate is produced by a positive sensor rotation about the Y axis
|
||
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a
|
||
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate
|
||
flowMeaTime_ms = imuSampleTime_ms;
|
||
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data
|
||
// reset the accumulated body delta angle and time
|
||
// don't do the calculation if not enough time lapsed for a reliable body rate measurement
|
||
if (delTimeOF > 0.01f) {
|
||
flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_float((rawGyroRates.x - delAngBodyOF.x/delTimeOF),-0.1f,0.1f);
|
||
flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_float((rawGyroRates.y - delAngBodyOF.y/delTimeOF),-0.1f,0.1f);
|
||
delAngBodyOF.zero();
|
||
delTimeOF = 0.0f;
|
||
}
|
||
// check for takeoff if relying on optical flow and zero measurements until takeoff detected
|
||
// if we haven't taken off - constrain position and velocity states
|
||
if (frontend->_fusionModeGPS == 3) {
|
||
detectOptFlowTakeoff();
|
||
}
|
||
// calculate rotation matrices at mid sample time for flow observations
|
||
stateStruct.quat.rotation_matrix(Tbn_flow);
|
||
Tnb_flow = Tbn_flow.transposed();
|
||
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data)
|
||
if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) {
|
||
// correct flow sensor rates for bias
|
||
omegaAcrossFlowTime.x = rawGyroRates.x - flowGyroBias.x;
|
||
omegaAcrossFlowTime.y = rawGyroRates.y - flowGyroBias.y;
|
||
// write uncorrected flow rate measurements that will be used by the focal length scale factor estimator
|
||
// note correction for different axis and sign conventions used by the px4flow sensor
|
||
ofDataNew.flowRadXY = - rawFlowRates; // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec)
|
||
// write flow rate measurements corrected for body rates
|
||
ofDataNew.flowRadXYcomp.x = ofDataNew.flowRadXY.x + omegaAcrossFlowTime.x;
|
||
ofDataNew.flowRadXYcomp.y = ofDataNew.flowRadXY.y + omegaAcrossFlowTime.y;
|
||
// record time last observation was received so we can detect loss of data elsewhere
|
||
flowValidMeaTime_ms = imuSampleTime_ms;
|
||
// estimate sample time of the measurement
|
||
ofDataNew.time_ms = imuSampleTime_ms - frontend->_flowDelay_ms - frontend->flowTimeDeltaAvg_ms/2;
|
||
// Correct for the average intersampling delay due to the filter updaterate
|
||
ofDataNew.time_ms -= localFilterTimeStep_ms/2;
|
||
// Prevent time delay exceeding age of oldest IMU data in the buffer
|
||
ofDataNew.time_ms = MAX(ofDataNew.time_ms,imuDataDelayed.time_ms);
|
||
// Save data to buffer
|
||
storedOF.push(ofDataNew);
|
||
// Check for data at the fusion time horizon
|
||
flowDataToFuse = storedOF.recall(ofDataDelayed, imuDataDelayed.time_ms);
|
||
}
|
||
}
|
||
|
||
|
||
/********************************************************
|
||
* MAGNETOMETER *
|
||
********************************************************/
|
||
|
||
// check for new magnetometer data and update store measurements if available
|
||
void NavEKF2_core::readMagData()
|
||
{
|
||
if (!_ahrs->get_compass()) {
|
||
allMagSensorsFailed = true;
|
||
return;
|
||
}
|
||
// If we are a vehicle with a sideslip constraint to aid yaw estimation and we have timed out on our last avialable
|
||
// magnetometer, then declare the magnetometers as failed for this flight
|
||
uint8_t maxCount = _ahrs->get_compass()->get_count();
|
||
if (allMagSensorsFailed || (magTimeout && assume_zero_sideslip() && magSelectIndex >= maxCount-1 && inFlight)) {
|
||
allMagSensorsFailed = true;
|
||
return;
|
||
}
|
||
|
||
// do not accept new compass data faster than 14Hz (nominal rate is 10Hz) to prevent high processor loading
|
||
// because magnetometer fusion is an expensive step and we could overflow the FIFO buffer
|
||
if (use_compass() && _ahrs->get_compass()->last_update_usec() - lastMagUpdate_us > 70000) {
|
||
frontend->logging.log_compass = true;
|
||
|
||
// If the magnetometer has timed out (been rejected too long) we find another magnetometer to use if available
|
||
// Don't do this if we are on the ground because there can be magnetic interference and we need to know if there is a problem
|
||
// before taking off. Don't do this within the first 30 seconds from startup because the yaw error could be due to large yaw gyro bias affsets
|
||
if (magTimeout && (maxCount > 1) && !onGround && imuSampleTime_ms - ekfStartTime_ms > 30000) {
|
||
|
||
// search through the list of magnetometers
|
||
for (uint8_t i=1; i<maxCount; i++) {
|
||
uint8_t tempIndex = magSelectIndex + i;
|
||
// loop back to the start index if we have exceeded the bounds
|
||
if (tempIndex >= maxCount) {
|
||
tempIndex -= maxCount;
|
||
}
|
||
// if the magnetometer is allowed to be used for yaw and has a different index, we start using it
|
||
if (_ahrs->get_compass()->use_for_yaw(tempIndex) && tempIndex != magSelectIndex) {
|
||
magSelectIndex = tempIndex;
|
||
hal.console->printf("EKF2 IMU%u switching to compass %u\n",(unsigned)imu_index,magSelectIndex);
|
||
// reset the timeout flag and timer
|
||
magTimeout = false;
|
||
lastHealthyMagTime_ms = imuSampleTime_ms;
|
||
// zero the learned magnetometer bias states
|
||
stateStruct.body_magfield.zero();
|
||
// clear the measurement buffer
|
||
storedMag.reset();
|
||
}
|
||
}
|
||
}
|
||
|
||
// detect changes to magnetometer offset parameters and reset states
|
||
Vector3f nowMagOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex);
|
||
bool changeDetected = lastMagOffsetsValid && (nowMagOffsets != lastMagOffsets);
|
||
if (changeDetected) {
|
||
// zero the learned magnetometer bias states
|
||
stateStruct.body_magfield.zero();
|
||
// clear the measurement buffer
|
||
storedMag.reset();
|
||
}
|
||
lastMagOffsets = nowMagOffsets;
|
||
lastMagOffsetsValid = true;
|
||
|
||
// store time of last measurement update
|
||
lastMagUpdate_us = _ahrs->get_compass()->last_update_usec(magSelectIndex);
|
||
|
||
// estimate of time magnetometer measurement was taken, allowing for delays
|
||
magDataNew.time_ms = imuSampleTime_ms - frontend->magDelay_ms;
|
||
|
||
// Correct for the average intersampling delay due to the filter updaterate
|
||
magDataNew.time_ms -= localFilterTimeStep_ms/2;
|
||
|
||
// read compass data and scale to improve numerical conditioning
|
||
magDataNew.mag = _ahrs->get_compass()->get_field(magSelectIndex) * 0.001f;
|
||
|
||
// check for consistent data between magnetometers
|
||
consistentMagData = _ahrs->get_compass()->consistent();
|
||
|
||
// save magnetometer measurement to buffer to be fused later
|
||
storedMag.push(magDataNew);
|
||
}
|
||
}
|
||
|
||
/********************************************************
|
||
* Inertial Measurements *
|
||
********************************************************/
|
||
|
||
/*
|
||
* Read IMU delta angle and delta velocity measurements and downsample to 100Hz
|
||
* for storage in the data buffers used by the EKF. If the IMU data arrives at
|
||
* lower rate than 100Hz, then no downsampling or upsampling will be performed.
|
||
* Downsampling is done using a method that does not introduce coning or sculling
|
||
* errors.
|
||
*/
|
||
void NavEKF2_core::readIMUData()
|
||
{
|
||
const AP_InertialSensor &ins = _ahrs->get_ins();
|
||
|
||
// average IMU sampling rate
|
||
dtIMUavg = ins.get_loop_delta_t();
|
||
|
||
// the imu sample time is used as a common time reference throughout the filter
|
||
imuSampleTime_ms = AP_HAL::millis();
|
||
|
||
// use the nominated imu or primary if not available
|
||
if (ins.use_accel(imu_index)) {
|
||
readDeltaVelocity(imu_index, imuDataNew.delVel, imuDataNew.delVelDT);
|
||
} else {
|
||
readDeltaVelocity(ins.get_primary_accel(), imuDataNew.delVel, imuDataNew.delVelDT);
|
||
}
|
||
|
||
// Get delta angle data from primary gyro or primary if not available
|
||
if (ins.use_gyro(imu_index)) {
|
||
readDeltaAngle(imu_index, imuDataNew.delAng);
|
||
} else {
|
||
readDeltaAngle(ins.get_primary_gyro(), imuDataNew.delAng);
|
||
}
|
||
imuDataNew.delAngDT = MAX(ins.get_delta_angle_dt(imu_index),1.0e-4f);
|
||
|
||
// Get current time stamp
|
||
imuDataNew.time_ms = imuSampleTime_ms;
|
||
|
||
// Accumulate the measurement time interval for the delta velocity and angle data
|
||
imuDataDownSampledNew.delAngDT += imuDataNew.delAngDT;
|
||
imuDataDownSampledNew.delVelDT += imuDataNew.delVelDT;
|
||
|
||
// Rotate quaternon atitude from previous to new and normalise.
|
||
// Accumulation using quaternions prevents introduction of coning errors due to downsampling
|
||
imuQuatDownSampleNew.rotate(imuDataNew.delAng);
|
||
imuQuatDownSampleNew.normalize();
|
||
|
||
// Rotate the latest delta velocity into body frame at the start of accumulation
|
||
Matrix3f deltaRotMat;
|
||
imuQuatDownSampleNew.rotation_matrix(deltaRotMat);
|
||
|
||
// Apply the delta velocity to the delta velocity accumulator
|
||
imuDataDownSampledNew.delVel += deltaRotMat*imuDataNew.delVel;
|
||
|
||
// Keep track of the number of IMU frames since the last state prediction
|
||
framesSincePredict++;
|
||
|
||
// If 10msec has elapsed, and the frontend has allowed us to start a new predict cycle, then store the accumulated IMU data
|
||
// to be used by the state prediction, ignoring the frontend permission if more than 20msec has lapsed
|
||
if ((dtIMUavg*(float)framesSincePredict >= 0.01f && startPredictEnabled) || (dtIMUavg*(float)framesSincePredict >= 0.02f)) {
|
||
// convert the accumulated quaternion to an equivalent delta angle
|
||
imuQuatDownSampleNew.to_axis_angle(imuDataDownSampledNew.delAng);
|
||
// Time stamp the data
|
||
imuDataDownSampledNew.time_ms = imuSampleTime_ms;
|
||
// Write data to the FIFO IMU buffer
|
||
storedIMU.push_youngest_element(imuDataDownSampledNew);
|
||
// zero the accumulated IMU data and quaternion
|
||
imuDataDownSampledNew.delAng.zero();
|
||
imuDataDownSampledNew.delVel.zero();
|
||
imuDataDownSampledNew.delAngDT = 0.0f;
|
||
imuDataDownSampledNew.delVelDT = 0.0f;
|
||
imuQuatDownSampleNew[0] = 1.0f;
|
||
imuQuatDownSampleNew[3] = imuQuatDownSampleNew[2] = imuQuatDownSampleNew[1] = 0.0f;
|
||
// reset the counter used to let the frontend know how many frames have elapsed since we started a new update cycle
|
||
framesSincePredict = 0;
|
||
// set the flag to let the filter know it has new IMU data nad needs to run
|
||
runUpdates = true;
|
||
// extract the oldest available data from the FIFO buffer
|
||
imuDataDelayed = storedIMU.pop_oldest_element();
|
||
float minDT = 0.1f*dtEkfAvg;
|
||
imuDataDelayed.delAngDT = MAX(imuDataDelayed.delAngDT,minDT);
|
||
imuDataDelayed.delVelDT = MAX(imuDataDelayed.delVelDT,minDT);
|
||
// correct the extracted IMU data for sensor errors
|
||
correctDeltaAngle(imuDataDelayed.delAng, imuDataDelayed.delAngDT);
|
||
correctDeltaVelocity(imuDataDelayed.delVel, imuDataDelayed.delVelDT);
|
||
} else {
|
||
// we don't have new IMU data in the buffer so don't run filter updates on this time step
|
||
runUpdates = false;
|
||
}
|
||
}
|
||
|
||
// read the delta velocity and corresponding time interval from the IMU
|
||
// return false if data is not available
|
||
bool NavEKF2_core::readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt) {
|
||
const AP_InertialSensor &ins = _ahrs->get_ins();
|
||
|
||
if (ins_index < ins.get_accel_count()) {
|
||
ins.get_delta_velocity(ins_index,dVel);
|
||
dVel_dt = MAX(ins.get_delta_velocity_dt(ins_index),1.0e-4f);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/********************************************************
|
||
* Global Position Measurement *
|
||
********************************************************/
|
||
|
||
// check for new valid GPS data and update stored measurement if available
|
||
void NavEKF2_core::readGpsData()
|
||
{
|
||
// check for new GPS data
|
||
// do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer
|
||
if (_ahrs->get_gps().last_message_time_ms() - lastTimeGpsReceived_ms > 70) {
|
||
if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) {
|
||
// report GPS fix status
|
||
gpsCheckStatus.bad_fix = false;
|
||
|
||
// store fix time from previous read
|
||
secondLastGpsTime_ms = lastTimeGpsReceived_ms;
|
||
|
||
// get current fix time
|
||
lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms();
|
||
|
||
// estimate when the GPS fix was valid, allowing for GPS processing and other delays
|
||
// ideally we should be using a timing signal from the GPS receiver to set this time
|
||
gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend->_gpsDelay_ms;
|
||
|
||
// Correct for the average intersampling delay due to the filter updaterate
|
||
gpsDataNew.time_ms -= localFilterTimeStep_ms/2;
|
||
|
||
// Prevent time delay exceeding age of oldest IMU data in the buffer
|
||
gpsDataNew.time_ms = MAX(gpsDataNew.time_ms,imuDataDelayed.time_ms);
|
||
|
||
// read the NED velocity from the GPS
|
||
gpsDataNew.vel = _ahrs->get_gps().velocity();
|
||
|
||
// Use the speed and position accuracy from the GPS if available, otherwise set it to zero.
|
||
// Apply a decaying envelope filter with a 5 second time constant to the raw accuracy data
|
||
float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f);
|
||
gpsSpdAccuracy *= (1.0f - alpha);
|
||
float gpsSpdAccRaw;
|
||
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) {
|
||
gpsSpdAccuracy = 0.0f;
|
||
} else {
|
||
gpsSpdAccuracy = MAX(gpsSpdAccuracy,gpsSpdAccRaw);
|
||
gpsSpdAccuracy = MIN(gpsSpdAccuracy,50.0f);
|
||
}
|
||
gpsPosAccuracy *= (1.0f - alpha);
|
||
float gpsPosAccRaw;
|
||
if (!_ahrs->get_gps().horizontal_accuracy(gpsPosAccRaw)) {
|
||
gpsPosAccuracy = 0.0f;
|
||
} else {
|
||
gpsPosAccuracy = MAX(gpsPosAccuracy,gpsPosAccRaw);
|
||
gpsPosAccuracy = MIN(gpsPosAccuracy,100.0f);
|
||
}
|
||
|
||
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
|
||
if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) {
|
||
gpsNoiseScaler = 1.0f;
|
||
} else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) {
|
||
gpsNoiseScaler = 1.4f;
|
||
} else { // <= 4 satellites or in constant position mode
|
||
gpsNoiseScaler = 2.0f;
|
||
}
|
||
|
||
// Check if GPS can output vertical velocity and set GPS fusion mode accordingly
|
||
if (_ahrs->get_gps().have_vertical_velocity() && frontend->_fusionModeGPS == 0) {
|
||
useGpsVertVel = true;
|
||
} else {
|
||
useGpsVertVel = false;
|
||
}
|
||
|
||
// Monitor quality of the GPS velocity data before and after alignment using separate checks
|
||
if (PV_AidingMode != AID_ABSOLUTE) {
|
||
// Pre-alignment checks
|
||
gpsGoodToAlign = calcGpsGoodToAlign();
|
||
}
|
||
|
||
// Post-alignment checks
|
||
calcGpsGoodForFlight();
|
||
|
||
// Read the GPS locaton in WGS-84 lat,long,height coordinates
|
||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||
|
||
// Set the EKF origin and magnetic field declination if not previously set and GPS checks have passed
|
||
if (gpsGoodToAlign && !validOrigin) {
|
||
setOrigin();
|
||
// Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly
|
||
alignMagStateDeclination();
|
||
// Set the height of the NED origin to ‘height of baro height datum relative to GPS height datum'
|
||
EKF_origin.alt = gpsloc.alt - baroDataNew.hgt;
|
||
}
|
||
|
||
// convert GPS measurements to local NED and save to buffer to be fused later if we have a valid origin
|
||
if (validOrigin) {
|
||
gpsDataNew.pos = location_diff(EKF_origin, gpsloc);
|
||
gpsDataNew.hgt = 0.01f * (gpsloc.alt - EKF_origin.alt);
|
||
storedGPS.push(gpsDataNew);
|
||
// declare GPS available for use
|
||
gpsNotAvailable = false;
|
||
}
|
||
|
||
frontend->logging.log_gps = true;
|
||
|
||
} else {
|
||
// report GPS fix status
|
||
gpsCheckStatus.bad_fix = true;
|
||
}
|
||
}
|
||
|
||
// We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon
|
||
// If that happens we need to put the filter into a constant position mode, reset the velocity states to zero
|
||
// and use the last estimated position as a synthetic GPS position
|
||
|
||
// check if we can use opticalflow as a backup
|
||
bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout);
|
||
|
||
// Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift
|
||
uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend->gpsRetryTimeUseTAS_ms : frontend->gpsRetryTimeNoTAS_ms;
|
||
|
||
// Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode
|
||
uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend->gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms;
|
||
|
||
// If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out
|
||
if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) {
|
||
|
||
// Let other processes know that GPS is not available and that a timeout has occurred
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
gpsNotAvailable = true;
|
||
|
||
// If we are totally reliant on GPS for navigation, then we need to switch to a non-GPS mode of operation
|
||
// If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode.
|
||
// If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode.
|
||
if (PV_AidingMode == AID_ABSOLUTE && !useAirspeed() && !assume_zero_sideslip()) {
|
||
if (optFlowBackupAvailable) {
|
||
// we can do optical flow only nav
|
||
frontend->_fusionModeGPS = 3;
|
||
PV_AidingMode = AID_RELATIVE;
|
||
} else {
|
||
// store the current position
|
||
lastKnownPositionNE.x = stateStruct.position.x;
|
||
lastKnownPositionNE.y = stateStruct.position.y;
|
||
|
||
// put the filter into constant position mode
|
||
PV_AidingMode = AID_NONE;
|
||
|
||
// Reset the velocity and position states
|
||
ResetVelocity();
|
||
ResetPosition();
|
||
|
||
// Reset the normalised innovation to avoid false failing bad fusion tests
|
||
velTestRatio = 0.0f;
|
||
posTestRatio = 0.0f;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// read the delta angle and corresponding time interval from the IMU
|
||
// return false if data is not available
|
||
bool NavEKF2_core::readDeltaAngle(uint8_t ins_index, Vector3f &dAng) {
|
||
const AP_InertialSensor &ins = _ahrs->get_ins();
|
||
|
||
if (ins_index < ins.get_gyro_count()) {
|
||
ins.get_delta_angle(ins_index,dAng);
|
||
frontend->logging.log_imu = true;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/********************************************************
|
||
* Height Measurements *
|
||
********************************************************/
|
||
|
||
// check for new pressure altitude measurement data and update stored measurement if available
|
||
void NavEKF2_core::readBaroData()
|
||
{
|
||
// check to see if baro measurement has changed so we know if a new measurement has arrived
|
||
// do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer
|
||
if (frontend->_baro.get_last_update() - lastBaroReceived_ms > 70) {
|
||
frontend->logging.log_baro = true;
|
||
|
||
baroDataNew.hgt = frontend->_baro.get_altitude();
|
||
|
||
// If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
|
||
// This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent
|
||
if (isAiding && getTakeoffExpected()) {
|
||
baroDataNew.hgt = MAX(baroDataNew.hgt, meaHgtAtTakeOff);
|
||
}
|
||
|
||
// time stamp used to check for new measurement
|
||
lastBaroReceived_ms = frontend->_baro.get_last_update();
|
||
|
||
// estimate of time height measurement was taken, allowing for delays
|
||
baroDataNew.time_ms = lastBaroReceived_ms - frontend->_hgtDelay_ms;
|
||
|
||
// Correct for the average intersampling delay due to the filter updaterate
|
||
baroDataNew.time_ms -= localFilterTimeStep_ms/2;
|
||
|
||
// Prevent time delay exceeding age of oldest IMU data in the buffer
|
||
baroDataNew.time_ms = MAX(baroDataNew.time_ms,imuDataDelayed.time_ms);
|
||
|
||
// save baro measurement to buffer to be fused later
|
||
storedBaro.push(baroDataNew);
|
||
}
|
||
}
|
||
|
||
// calculate filtered offset between baro height measurement and EKF height estimate
|
||
// offset should be subtracted from baro measurement to match filter estimate
|
||
// offset is used to enable reversion to baro if alternate height data sources fail
|
||
void NavEKF2_core::calcFiltBaroOffset()
|
||
{
|
||
// Apply a first order LPF with spike protection
|
||
baroHgtOffset += 0.1f * constrain_float(baroDataDelayed.hgt + stateStruct.position.z - baroHgtOffset, -5.0f, 5.0f);
|
||
}
|
||
|
||
/********************************************************
|
||
* Air Speed Measurements *
|
||
********************************************************/
|
||
|
||
// check for new airspeed data and update stored measurements if available
|
||
void NavEKF2_core::readAirSpdData()
|
||
{
|
||
// if airspeed reading is valid and is set by the user to be used and has been updated then
|
||
// we take a new reading, convert from EAS to TAS and set the flag letting other functions
|
||
// know a new measurement is available
|
||
const AP_Airspeed *aspeed = _ahrs->get_airspeed();
|
||
if (aspeed &&
|
||
aspeed->use() &&
|
||
aspeed->last_update_ms() != timeTasReceived_ms) {
|
||
tasDataNew.tas = aspeed->get_airspeed() * aspeed->get_EAS2TAS();
|
||
timeTasReceived_ms = aspeed->last_update_ms();
|
||
tasDataNew.time_ms = timeTasReceived_ms - frontend->tasDelay_ms;
|
||
|
||
// Correct for the average intersampling delay due to the filter update rate
|
||
tasDataNew.time_ms -= localFilterTimeStep_ms/2;
|
||
|
||
// Save data into the buffer to be fused when the fusion time horizon catches up with it
|
||
storedTAS.push(tasDataNew);
|
||
}
|
||
// Check the buffer for measurements that have been overtaken by the fusion time horizon and need to be fused
|
||
tasDataToFuse = storedTAS.recall(tasDataDelayed,imuDataDelayed.time_ms);
|
||
}
|
||
|
||
#endif // HAL_CPU_CLASS
|