ardupilot/ArduPlane/commands_logic.cpp
Tom Pittenger f048aafb76 Plane: store auto land slope
- also changed order of landing slope calc but is functionally the same
2016-05-17 15:39:05 -07:00

1041 lines
35 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Plane.h"
/********************************************************************************/
// Command Event Handlers
/********************************************************************************/
bool Plane::start_command(const AP_Mission::Mission_Command& cmd)
{
// default to non-VTOL loiter
auto_state.vtol_loiter = false;
// log when new commands start
if (should_log(MASK_LOG_CMD)) {
DataFlash.Log_Write_Mission_Cmd(mission, cmd);
}
// special handling for nav vs non-nav commands
if (AP_Mission::is_nav_cmd(cmd)) {
// set land_complete to false to stop us zeroing the throttle
auto_state.land_complete = false;
auto_state.land_pre_flare = false;
auto_state.sink_rate = 0;
// set takeoff_complete to true so we don't add extra elevator
// except in a takeoff
auto_state.takeoff_complete = true;
// if a go around had been commanded, clear it now.
auto_state.commanded_go_around = false;
// start non-idle
auto_state.idle_mode = false;
// once landed, post some landing statistics to the GCS
auto_state.post_landing_stats = false;
nav_controller->set_data_is_stale();
// reset loiter start time. New command is a new loiter
loiter.start_time_ms = 0;
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Executing nav command ID #%i",cmd.id);
} else {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Executing command ID #%i",cmd.id);
}
switch(cmd.id) {
case MAV_CMD_NAV_TAKEOFF:
crash_state.is_crashed = false;
do_takeoff(cmd);
break;
case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint
do_nav_wp(cmd);
break;
case MAV_CMD_NAV_LAND: // LAND to Waypoint
do_land(cmd);
break;
case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely
do_loiter_unlimited(cmd);
break;
case MAV_CMD_NAV_LOITER_TURNS: // Loiter N Times
do_loiter_turns(cmd);
break;
case MAV_CMD_NAV_LOITER_TIME:
do_loiter_time(cmd);
break;
case MAV_CMD_NAV_LOITER_TO_ALT:
do_loiter_to_alt(cmd);
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
set_mode(RTL);
break;
case MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT:
do_continue_and_change_alt(cmd);
break;
case MAV_CMD_NAV_ALTITUDE_WAIT:
do_altitude_wait(cmd);
break;
case MAV_CMD_NAV_VTOL_TAKEOFF:
crash_state.is_crashed = false;
return quadplane.do_vtol_takeoff(cmd);
case MAV_CMD_NAV_VTOL_LAND:
crash_state.is_crashed = false;
return quadplane.do_vtol_land(cmd);
// Conditional commands
case MAV_CMD_CONDITION_DELAY:
do_wait_delay(cmd);
break;
case MAV_CMD_CONDITION_DISTANCE:
do_within_distance(cmd);
break;
// Do commands
case MAV_CMD_DO_CHANGE_SPEED:
do_change_speed(cmd);
break;
case MAV_CMD_DO_SET_HOME:
do_set_home(cmd);
break;
case MAV_CMD_DO_SET_SERVO:
ServoRelayEvents.do_set_servo(cmd.content.servo.channel, cmd.content.servo.pwm);
break;
case MAV_CMD_DO_SET_RELAY:
ServoRelayEvents.do_set_relay(cmd.content.relay.num, cmd.content.relay.state);
break;
case MAV_CMD_DO_REPEAT_SERVO:
ServoRelayEvents.do_repeat_servo(cmd.content.repeat_servo.channel, cmd.content.repeat_servo.pwm,
cmd.content.repeat_servo.repeat_count, cmd.content.repeat_servo.cycle_time * 1000.0f);
break;
case MAV_CMD_DO_REPEAT_RELAY:
ServoRelayEvents.do_repeat_relay(cmd.content.repeat_relay.num, cmd.content.repeat_relay.repeat_count,
cmd.content.repeat_relay.cycle_time * 1000.0f);
break;
case MAV_CMD_DO_INVERTED_FLIGHT:
if (cmd.p1 == 0 || cmd.p1 == 1) {
auto_state.inverted_flight = (bool)cmd.p1;
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set inverted %u", cmd.p1);
}
break;
case MAV_CMD_DO_LAND_START:
//ensure go around hasn't been set
auto_state.commanded_go_around = false;
break;
case MAV_CMD_DO_FENCE_ENABLE:
#if GEOFENCE_ENABLED == ENABLED
if (cmd.p1 != 2) {
if (!geofence_set_enabled((bool) cmd.p1, AUTO_TOGGLED)) {
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Unable to set fence. Enabled state to %u", cmd.p1);
} else {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set fence enabled state to %u", cmd.p1);
}
} else { //commanding to only disable floor
if (! geofence_set_floor_enabled(false)) {
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Unabled to disable fence floor");
} else {
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Fence floor disabled");
}
}
#endif
break;
case MAV_CMD_DO_AUTOTUNE_ENABLE:
autotune_enable(cmd.p1);
break;
#if CAMERA == ENABLED
case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty|
break;
case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)|
do_digicam_configure(cmd);
break;
case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty|
// do_digicam_control Send Digicam Control message with the camera library
do_digicam_control(cmd);
break;
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
camera.set_trigger_distance(cmd.content.cam_trigg_dist.meters);
break;
#endif
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
do_parachute(cmd);
break;
#endif
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for a sensor set or the
// vehicle itself. This can then be used by the vehicles control
// system to control the vehicle attitude and the attitude of various
// devices such as cameras.
// |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z|
case MAV_CMD_DO_SET_ROI:
if (cmd.content.location.alt == 0 && cmd.content.location.lat == 0 && cmd.content.location.lng == 0) {
// switch off the camera tracking if enabled
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
camera_mount.set_mode_to_default();
}
} else {
// set mount's target location
camera_mount.set_roi_target(cmd.content.location);
}
break;
case MAV_CMD_DO_MOUNT_CONTROL: // 205
// point the camera to a specified angle
camera_mount.set_angle_targets(cmd.content.mount_control.roll,
cmd.content.mount_control.pitch,
cmd.content.mount_control.yaw);
break;
#endif
case MAV_CMD_DO_VTOL_TRANSITION:
plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)cmd.content.do_vtol_transition.target_state);
break;
}
return true;
}
/*******************************************************************************
Verify command Handlers
Each type of mission element has a "verify" operation. The verify
operation returns true when the mission element has completed and we
should move onto the next mission element.
*******************************************************************************/
bool Plane::verify_command(const AP_Mission::Mission_Command& cmd) // Returns true if command complete
{
switch(cmd.id) {
case MAV_CMD_NAV_TAKEOFF:
return verify_takeoff();
case MAV_CMD_NAV_LAND:
return verify_land();
case MAV_CMD_NAV_WAYPOINT:
return verify_nav_wp(cmd);
case MAV_CMD_NAV_LOITER_UNLIM:
return verify_loiter_unlim();
case MAV_CMD_NAV_LOITER_TURNS:
return verify_loiter_turns();
case MAV_CMD_NAV_LOITER_TIME:
return verify_loiter_time();
case MAV_CMD_NAV_LOITER_TO_ALT:
return verify_loiter_to_alt();
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
return verify_RTL();
case MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT:
return verify_continue_and_change_alt();
case MAV_CMD_NAV_ALTITUDE_WAIT:
return verify_altitude_wait(cmd);
// Conditional commands
case MAV_CMD_CONDITION_DELAY:
return verify_wait_delay();
case MAV_CMD_CONDITION_DISTANCE:
return verify_within_distance();
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
// assume parachute was released successfully
return true;
break;
#endif
case MAV_CMD_NAV_VTOL_TAKEOFF:
return quadplane.verify_vtol_takeoff(cmd);
case MAV_CMD_NAV_VTOL_LAND:
return quadplane.verify_vtol_land();
// do commands (always return true)
case MAV_CMD_DO_CHANGE_SPEED:
case MAV_CMD_DO_SET_HOME:
case MAV_CMD_DO_SET_SERVO:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_REPEAT_SERVO:
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CONTROL_VIDEO:
case MAV_CMD_DO_DIGICAM_CONFIGURE:
case MAV_CMD_DO_DIGICAM_CONTROL:
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
case MAV_CMD_NAV_ROI:
case MAV_CMD_DO_MOUNT_CONFIGURE:
case MAV_CMD_DO_INVERTED_FLIGHT:
case MAV_CMD_DO_LAND_START:
case MAV_CMD_DO_FENCE_ENABLE:
case MAV_CMD_DO_AUTOTUNE_ENABLE:
return true;
default:
// error message
if (AP_Mission::is_nav_cmd(cmd)) {
gcs_send_text(MAV_SEVERITY_WARNING,"Verify nav. Invalid or no current nav cmd");
}else{
gcs_send_text(MAV_SEVERITY_WARNING,"Verify conditon. Invalid or no current condition cmd");
}
// return true so that we do not get stuck at this command
return true;
}
}
/********************************************************************************/
// Nav (Must) commands
/********************************************************************************/
void Plane::do_RTL(int32_t rtl_altitude)
{
auto_state.next_wp_no_crosstrack = true;
auto_state.no_crosstrack = true;
prev_WP_loc = current_loc;
next_WP_loc = rally.calc_best_rally_or_home_location(current_loc, rtl_altitude);
setup_terrain_target_alt(next_WP_loc);
set_target_altitude_location(next_WP_loc);
if (g.loiter_radius < 0) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
setup_glide_slope();
setup_turn_angle();
if (should_log(MASK_LOG_MODE))
DataFlash.Log_Write_Mode(control_mode);
}
void Plane::do_takeoff(const AP_Mission::Mission_Command& cmd)
{
prev_WP_loc = current_loc;
set_next_WP(cmd.content.location);
// pitch in deg, airspeed m/s, throttle %, track WP 1 or 0
auto_state.takeoff_pitch_cd = (int16_t)cmd.p1 * 100;
if (auto_state.takeoff_pitch_cd <= 0) {
// if the mission doesn't specify a pitch use 4 degrees
auto_state.takeoff_pitch_cd = 400;
}
auto_state.takeoff_altitude_rel_cm = next_WP_loc.alt - home.alt;
next_WP_loc.lat = home.lat + 10;
next_WP_loc.lng = home.lng + 10;
auto_state.takeoff_speed_time_ms = 0;
auto_state.takeoff_complete = false; // set flag to use gps ground course during TO. IMU will be doing yaw drift correction
auto_state.height_below_takeoff_to_level_off_cm = 0;
// Flag also used to override "on the ground" throttle disable
// zero locked course
steer_state.locked_course_err = 0;
steer_state.hold_course_cd = -1;
auto_state.baro_takeoff_alt = barometer.get_altitude();
}
void Plane::do_nav_wp(const AP_Mission::Mission_Command& cmd)
{
set_next_WP(cmd.content.location);
}
void Plane::do_land(const AP_Mission::Mission_Command& cmd)
{
auto_state.commanded_go_around = false;
set_next_WP(cmd.content.location);
// configure abort altitude and pitch
// if NAV_LAND has an abort altitude then use it, else use last takeoff, else use 50m
if (cmd.p1 > 0) {
auto_state.takeoff_altitude_rel_cm = (int16_t)cmd.p1 * 100;
} else if (auto_state.takeoff_altitude_rel_cm <= 0) {
auto_state.takeoff_altitude_rel_cm = 3000;
}
if (auto_state.takeoff_pitch_cd <= 0) {
// If no takeoff command has ever been used, default to a conservative 10deg
auto_state.takeoff_pitch_cd = 1000;
}
auto_state.land_slope = 0;
#if RANGEFINDER_ENABLED == ENABLED
// zero rangefinder state, start to accumulate good samples now
memset(&rangefinder_state, 0, sizeof(rangefinder_state));
#endif
}
void Plane::loiter_set_direction_wp(const AP_Mission::Mission_Command& cmd)
{
if (cmd.content.location.flags.loiter_ccw) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
}
void Plane::do_loiter_unlimited(const AP_Mission::Mission_Command& cmd)
{
Location cmdloc = cmd.content.location;
location_sanitize(current_loc, cmdloc);
set_next_WP(cmdloc);
loiter_set_direction_wp(cmd);
}
void Plane::do_loiter_turns(const AP_Mission::Mission_Command& cmd)
{
Location cmdloc = cmd.content.location;
location_sanitize(current_loc, cmdloc);
set_next_WP(cmdloc);
loiter_set_direction_wp(cmd);
loiter.total_cd = (uint32_t)(LOWBYTE(cmd.p1)) * 36000UL;
condition_value = 1; // used to signify primary turns goal not yet met
}
void Plane::do_loiter_time(const AP_Mission::Mission_Command& cmd)
{
Location cmdloc = cmd.content.location;
location_sanitize(current_loc, cmdloc);
set_next_WP(cmdloc);
loiter_set_direction_wp(cmd);
// we set start_time_ms when we reach the waypoint
loiter.time_max_ms = cmd.p1 * (uint32_t)1000; // convert sec to ms
condition_value = 1; // used to signify primary time goal not yet met
}
void Plane::do_continue_and_change_alt(const AP_Mission::Mission_Command& cmd)
{
// select heading method. Either mission, gps bearing projection or yaw based
// If prev_WP_loc and next_WP_loc are different then an accurate wp based bearing can
// be computed. However, if we had just changed modes before this, such as an aborted landing
// via mode change, the prev and next wps are the same.
float bearing;
if (!locations_are_same(prev_WP_loc, next_WP_loc)) {
// use waypoint based bearing, this is the usual case
steer_state.hold_course_cd = -1;
} else if (ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) {
// use gps ground course based bearing hold
steer_state.hold_course_cd = -1;
bearing = ahrs.get_gps().ground_course_cd() * 0.01f;
location_update(next_WP_loc, bearing, 1000); // push it out 1km
} else {
// use yaw based bearing hold
steer_state.hold_course_cd = wrap_360_cd(ahrs.yaw_sensor);
bearing = ahrs.yaw_sensor * 0.01f;
location_update(next_WP_loc, bearing, 1000); // push it out 1km
}
next_WP_loc.alt = cmd.content.location.alt + home.alt;
condition_value = cmd.p1;
reset_offset_altitude();
}
void Plane::do_altitude_wait(const AP_Mission::Mission_Command& cmd)
{
// set all servos to trim until we reach altitude or descent speed
auto_state.idle_mode = true;
}
void Plane::do_loiter_to_alt(const AP_Mission::Mission_Command& cmd)
{
//set target alt
Location loc = cmd.content.location;
location_sanitize(current_loc, loc);
set_next_WP(loc);
loiter_set_direction_wp(cmd);
// used to signify primary turns goal not yet met when non-zero
condition_value = next_WP_loc.alt;
if (condition_value == 0) {
// the value of 0 is used to signify it has been reached. Lets bump alt to 1 which is 10cm. Close enough!
condition_value = 1;
}
}
/********************************************************************************/
// Verify Nav (Must) commands
/********************************************************************************/
bool Plane::verify_takeoff()
{
if (ahrs.yaw_initialised() && steer_state.hold_course_cd == -1) {
const float min_gps_speed = 5;
if (auto_state.takeoff_speed_time_ms == 0 &&
gps.status() >= AP_GPS::GPS_OK_FIX_3D &&
gps.ground_speed() > min_gps_speed) {
auto_state.takeoff_speed_time_ms = millis();
}
if (auto_state.takeoff_speed_time_ms != 0 &&
millis() - auto_state.takeoff_speed_time_ms >= 2000) {
// once we reach sufficient speed for good GPS course
// estimation we save our current GPS ground course
// corrected for summed yaw to set the take off
// course. This keeps wings level until we are ready to
// rotate, and also allows us to cope with arbitrary
// compass errors for auto takeoff
float takeoff_course = wrap_PI(radians(gps.ground_course_cd()*0.01f)) - steer_state.locked_course_err;
takeoff_course = wrap_PI(takeoff_course);
steer_state.hold_course_cd = wrap_360_cd(degrees(takeoff_course)*100);
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Holding course %ld at %.1fm/s (%.1f)",
steer_state.hold_course_cd,
(double)gps.ground_speed(),
(double)degrees(steer_state.locked_course_err));
}
}
if (steer_state.hold_course_cd != -1) {
// call navigation controller for heading hold
nav_controller->update_heading_hold(steer_state.hold_course_cd);
} else {
nav_controller->update_level_flight();
}
// see if we have reached takeoff altitude
int32_t relative_alt_cm = adjusted_relative_altitude_cm();
if (relative_alt_cm > auto_state.takeoff_altitude_rel_cm) {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Takeoff complete at %.2fm",
(double)(relative_alt_cm*0.01f));
steer_state.hold_course_cd = -1;
auto_state.takeoff_complete = true;
next_WP_loc = prev_WP_loc = current_loc;
#if GEOFENCE_ENABLED == ENABLED
if (g.fence_autoenable > 0) {
if (! geofence_set_enabled(true, AUTO_TOGGLED)) {
gcs_send_text(MAV_SEVERITY_NOTICE, "Enable fence failed (cannot autoenable");
} else {
gcs_send_text(MAV_SEVERITY_INFO, "Fence enabled (autoenabled)");
}
}
#endif
// don't cross-track on completion of takeoff, as otherwise we
// can end up doing too sharp a turn
auto_state.next_wp_no_crosstrack = true;
return true;
} else {
return false;
}
}
/*
update navigation for normal mission waypoints. Return true when the
waypoint is complete
*/
bool Plane::verify_nav_wp(const AP_Mission::Mission_Command& cmd)
{
steer_state.hold_course_cd = -1;
if (auto_state.no_crosstrack) {
nav_controller->update_waypoint(current_loc, next_WP_loc);
} else {
nav_controller->update_waypoint(prev_WP_loc, next_WP_loc);
}
// see if the user has specified a maximum distance to waypoint
if (g.waypoint_max_radius > 0 &&
auto_state.wp_distance > (uint16_t)g.waypoint_max_radius) {
if (location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) {
// this is needed to ensure completion of the waypoint
prev_WP_loc = current_loc;
}
return false;
}
float acceptance_distance = nav_controller->turn_distance(g.waypoint_radius, auto_state.next_turn_angle);
if (cmd.p1 > 0) {
// allow user to override acceptance radius
acceptance_distance = cmd.p1;
}
if (auto_state.wp_distance <= acceptance_distance) {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Reached waypoint #%i dist %um",
(unsigned)mission.get_current_nav_cmd().index,
(unsigned)get_distance(current_loc, next_WP_loc));
return true;
}
// have we flown past the waypoint?
if (location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Passed waypoint #%i dist %um",
(unsigned)mission.get_current_nav_cmd().index,
(unsigned)get_distance(current_loc, next_WP_loc));
return true;
}
return false;
}
bool Plane::verify_loiter_unlim()
{
if (mission.get_current_nav_cmd().p1 <= 1 && abs(g.rtl_radius) > 1) {
// if mission radius is 0,1, and rtl_radius is valid, use rtl_radius.
loiter.direction = (g.rtl_radius < 0) ? -1 : 1;
update_loiter(abs(g.rtl_radius));
} else {
// else use mission radius
update_loiter(mission.get_current_nav_cmd().p1);
}
return false;
}
bool Plane::verify_loiter_time()
{
bool result = false;
// mission radius is always g.loiter_radius
update_loiter(0);
if (loiter.start_time_ms == 0) {
if (reached_loiter_target() && loiter.sum_cd > 1) {
// we've reached the target, start the timer
loiter.start_time_ms = millis();
}
} else if (condition_value != 0) {
// primary goal, loiter time
if ((millis() - loiter.start_time_ms) > loiter.time_max_ms) {
// primary goal completed, initialize secondary heading goal
condition_value = 0;
result = verify_loiter_heading(true);
}
} else {
// secondary goal, loiter to heading
result = verify_loiter_heading(false);
}
if (result) {
gcs_send_text(MAV_SEVERITY_WARNING,"Verify nav: LOITER time complete");
auto_state.vtol_loiter = false;
}
return result;
}
bool Plane::verify_loiter_turns()
{
bool result = false;
uint16_t radius = HIGHBYTE(mission.get_current_nav_cmd().p1);
update_loiter(radius);
// LOITER_TURNS makes no sense as VTOL
auto_state.vtol_loiter = false;
if (condition_value != 0) {
// primary goal, loiter time
if (loiter.sum_cd > loiter.total_cd && loiter.sum_cd > 1) {
// primary goal completed, initialize secondary heading goal
condition_value = 0;
result = verify_loiter_heading(true);
}
} else {
// secondary goal, loiter to heading
result = verify_loiter_heading(false);
}
if (result) {
gcs_send_text(MAV_SEVERITY_WARNING,"Verify nav: LOITER orbits complete");
}
return result;
}
/*
verify a LOITER_TO_ALT command. This involves checking we have
reached both the desired altitude and desired heading. The desired
altitude only needs to be reached once.
*/
bool Plane::verify_loiter_to_alt()
{
bool result = false;
update_loiter(mission.get_current_nav_cmd().p1);
//has target altitude been reached?
if (condition_value != 0) {
// primary goal, loiter alt
if (labs(condition_value - current_loc.alt) < 500 && loiter.sum_cd > 1) {
// primary goal completed, initialize secondary heading goal
condition_value = 0;
result = verify_loiter_heading(true);
}
} else {
// secondary goal, loiter to heading
result = verify_loiter_heading(false);
}
if (result) {
gcs_send_text(MAV_SEVERITY_WARNING,"Verify nav: LOITER alt complete");
}
return result;
}
bool Plane::verify_RTL()
{
if (g.rtl_radius < 0) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
update_loiter(abs(g.rtl_radius));
if (auto_state.wp_distance <= (uint32_t)MAX(g.waypoint_radius,0) ||
reached_loiter_target()) {
gcs_send_text(MAV_SEVERITY_INFO,"Reached HOME");
return true;
} else {
return false;
}
}
bool Plane::verify_continue_and_change_alt()
{
// is waypoint info not available and heading hold is?
if (locations_are_same(prev_WP_loc, next_WP_loc) &&
steer_state.hold_course_cd != -1) {
//keep flying the same course with fixed steering heading computed at start if cmd
nav_controller->update_heading_hold(steer_state.hold_course_cd);
}
else {
// Is the next_WP less than 200 m away?
if (get_distance(current_loc, next_WP_loc) < 200.0f) {
//push another 300 m down the line
int32_t next_wp_bearing_cd = get_bearing_cd(prev_WP_loc, next_WP_loc);
location_update(next_WP_loc, next_wp_bearing_cd * 0.01f, 300.0f);
}
//keep flying the same course
nav_controller->update_waypoint(prev_WP_loc, next_WP_loc);
}
//climbing?
if (condition_value == 1 && adjusted_altitude_cm() >= next_WP_loc.alt) {
return true;
}
//descending?
else if (condition_value == 2 &&
adjusted_altitude_cm() <= next_WP_loc.alt) {
return true;
}
//don't care if we're climbing or descending
else if (labs(adjusted_altitude_cm() - next_WP_loc.alt) <= 500) {
return true;
}
return false;
}
/*
see if we have reached altitude or descent speed
*/
bool Plane::verify_altitude_wait(const AP_Mission::Mission_Command &cmd)
{
if (current_loc.alt > cmd.content.altitude_wait.altitude*100.0f) {
gcs_send_text(MAV_SEVERITY_INFO,"Reached altitude");
return true;
}
if (auto_state.sink_rate > cmd.content.altitude_wait.descent_rate) {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Reached descent rate %.1f m/s", (double)auto_state.sink_rate);
return true;
}
// if requested, wiggle servos
if (cmd.content.altitude_wait.wiggle_time != 0) {
static uint32_t last_wiggle_ms;
if (auto_state.idle_wiggle_stage == 0 &&
AP_HAL::millis() - last_wiggle_ms > cmd.content.altitude_wait.wiggle_time*1000) {
auto_state.idle_wiggle_stage = 1;
last_wiggle_ms = AP_HAL::millis();
}
// idle_wiggle_stage is updated in set_servos_idle()
}
return false;
}
/********************************************************************************/
// Condition (May) commands
/********************************************************************************/
void Plane::do_wait_delay(const AP_Mission::Mission_Command& cmd)
{
condition_start = millis();
condition_value = cmd.content.delay.seconds * 1000; // convert seconds to milliseconds
}
void Plane::do_within_distance(const AP_Mission::Mission_Command& cmd)
{
condition_value = cmd.content.distance.meters;
}
/********************************************************************************/
// Verify Condition (May) commands
/********************************************************************************/
bool Plane::verify_wait_delay()
{
if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) {
condition_value = 0;
return true;
}
return false;
}
bool Plane::verify_within_distance()
{
if (auto_state.wp_distance < MAX(condition_value,0)) {
condition_value = 0;
return true;
}
return false;
}
/********************************************************************************/
// Do (Now) commands
/********************************************************************************/
void Plane::do_loiter_at_location()
{
if (g.loiter_radius < 0) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
next_WP_loc = current_loc;
}
void Plane::do_change_speed(const AP_Mission::Mission_Command& cmd)
{
switch (cmd.content.speed.speed_type)
{
case 0: // Airspeed
if (cmd.content.speed.target_ms > 0) {
g.airspeed_cruise_cm.set(cmd.content.speed.target_ms * 100);
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set airspeed %u m/s", (unsigned)cmd.content.speed.target_ms);
}
break;
case 1: // Ground speed
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set groundspeed %u", (unsigned)cmd.content.speed.target_ms);
g.min_gndspeed_cm.set(cmd.content.speed.target_ms * 100);
break;
}
if (cmd.content.speed.throttle_pct > 0 && cmd.content.speed.throttle_pct <= 100) {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set throttle %u", (unsigned)cmd.content.speed.throttle_pct);
aparm.throttle_cruise.set(cmd.content.speed.throttle_pct);
}
}
void Plane::do_set_home(const AP_Mission::Mission_Command& cmd)
{
if (cmd.p1 == 1 && gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
init_home();
} else {
ahrs.set_home(cmd.content.location);
home_is_set = HOME_SET_NOT_LOCKED;
Log_Write_Home_And_Origin();
GCS_MAVLINK::send_home_all(cmd.content.location);
}
}
// do_digicam_configure Send Digicam Configure message with the camera library
void Plane::do_digicam_configure(const AP_Mission::Mission_Command& cmd)
{
#if CAMERA == ENABLED
camera.configure(cmd.content.digicam_configure.shooting_mode,
cmd.content.digicam_configure.shutter_speed,
cmd.content.digicam_configure.aperture,
cmd.content.digicam_configure.ISO,
cmd.content.digicam_configure.exposure_type,
cmd.content.digicam_configure.cmd_id,
cmd.content.digicam_configure.engine_cutoff_time);
#endif
}
// do_digicam_control Send Digicam Control message with the camera library
void Plane::do_digicam_control(const AP_Mission::Mission_Command& cmd)
{
#if CAMERA == ENABLED
if (camera.control(cmd.content.digicam_control.session,
cmd.content.digicam_control.zoom_pos,
cmd.content.digicam_control.zoom_step,
cmd.content.digicam_control.focus_lock,
cmd.content.digicam_control.shooting_cmd,
cmd.content.digicam_control.cmd_id)) {
log_picture();
}
#endif
}
// do_take_picture - take a picture with the camera library
void Plane::do_take_picture()
{
#if CAMERA == ENABLED
camera.trigger_pic(true);
log_picture();
#endif
}
#if PARACHUTE == ENABLED
// do_parachute - configure or release parachute
void Plane::do_parachute(const AP_Mission::Mission_Command& cmd)
{
switch (cmd.p1) {
case PARACHUTE_DISABLE:
parachute.enabled(false);
break;
case PARACHUTE_ENABLE:
parachute.enabled(true);
break;
case PARACHUTE_RELEASE:
parachute_release();
break;
default:
// do nothing
break;
}
}
#endif
// log_picture - log picture taken and send feedback to GCS
void Plane::log_picture()
{
#if CAMERA == ENABLED
if (!camera.using_feedback_pin()) {
gcs_send_message(MSG_CAMERA_FEEDBACK);
if (should_log(MASK_LOG_CAMERA)) {
DataFlash.Log_Write_Camera(ahrs, gps, current_loc);
}
} else {
if (should_log(MASK_LOG_CAMERA)) {
DataFlash.Log_Write_Trigger(ahrs, gps, current_loc);
}
}
#endif
}
// start_command_callback - callback function called from ap-mission when it begins a new mission command
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
bool Plane::start_command_callback(const AP_Mission::Mission_Command &cmd)
{
if (control_mode == AUTO) {
return start_command(cmd);
}
return true;
}
// verify_command_callback - callback function called from ap-mission at 10hz or higher when a command is being run
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
bool Plane::verify_command_callback(const AP_Mission::Mission_Command& cmd)
{
if (control_mode == AUTO) {
bool cmd_complete = verify_command(cmd);
// send message to GCS
if (cmd_complete) {
gcs_send_mission_item_reached_message(cmd.index);
}
return cmd_complete;
}
return false;
}
// exit_mission_callback - callback function called from ap-mission when the mission has completed
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
void Plane::exit_mission_callback()
{
if (control_mode == AUTO) {
set_mode(RTL);
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Mission complete, changing mode to RTL");
}
}
bool Plane::verify_loiter_heading(bool init)
{
if (quadplane.in_vtol_auto()) {
// skip heading verify if in VTOL auto
return true;
}
//Get the lat/lon of next Nav waypoint after this one:
AP_Mission::Mission_Command next_nav_cmd;
if (! mission.get_next_nav_cmd(mission.get_current_nav_index() + 1,
next_nav_cmd)) {
//no next waypoint to shoot for -- go ahead and break out of loiter
return true;
}
if (get_distance(next_WP_loc, next_nav_cmd.content.location) < labs(g.loiter_radius)) {
/* Whenever next waypoint is within the loiter radius,
maintaining loiter would prevent us from ever pointing toward the next waypoint.
Hence break out of loiter immediately
*/
return true;
}
// Bearing in degrees
int32_t bearing_cd = get_bearing_cd(current_loc,next_nav_cmd.content.location);
// get current heading.
int32_t heading_cd = gps.ground_course_cd();
int32_t heading_err_cd = wrap_180_cd(bearing_cd - heading_cd);
if (init) {
loiter.total_cd = wrap_360_cd(bearing_cd - heading_cd);
loiter.sum_cd = 0;
}
/*
Check to see if the the plane is heading toward the land
waypoint. We use 20 degrees (+/-10 deg) of margin so that
we can handle 200 degrees/second of yaw. Allow turn count
to stop it too to ensure we don't loop around forever in
case high winds are forcing us beyond 200 deg/sec at this
particular moment.
*/
if (labs(heading_err_cd) <= 1000 ||
loiter.sum_cd > loiter.total_cd) {
// Want to head in a straight line from _here_ to the next waypoint instead of center of loiter wp
// 0 to xtrack from center of waypoint, 1 to xtrack from tangent exit location
if (next_WP_loc.flags.loiter_xtrack) {
next_WP_loc = current_loc;
}
return true;
}
return false;
}