ardupilot/Tools/AntennaTracker/Parameters.pde
Andrew Tridgell b1b96ec8e9 AntennaTracker: added SCAN mode
this is used to test calibrate the compass, and to test tracking PIDs
2014-04-09 15:28:14 +10:00

213 lines
9.0 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* AntennaTracker parameter definitions
*
*/
#define GSCALAR(v, name, def) { g.v.vtype, name, Parameters::k_param_ ## v, &g.v, {def_value : def} }
#define ASCALAR(v, name, def) { aparm.v.vtype, name, Parameters::k_param_ ## v, &aparm.v, {def_value : def} }
#define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &g.v, {group_info : class::var_info} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &v, {group_info : class::var_info} }
#define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &v, {group_info : class::var_info} }
const AP_Param::Info var_info[] PROGMEM = {
GSCALAR(format_version, "FORMAT_VERSION", 0),
GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type),
// @Param: SYSID_THISMAV
// @DisplayName: MAVLink system ID
// @Description: The identifier of this device in the MAVLink protocol
// @Range: 1 255
// @User: Advanced
GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID),
// @Param: SYSID_MYGCS
// @DisplayName: Ground station MAVLink system ID
// @Description: The identifier of the ground station in the MAVLink protocol. Don't change this unless you also modify the ground station to match.
// @Range: 1 255
// @User: Advanced
GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255),
// @Param: SERIAL0_BAUD
// @DisplayName: USB Console Baud Rate
// @Description: The baud rate used on the USB console
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial0_baud, "SERIAL0_BAUD", SERIAL0_BAUD/1000),
// @Param: SERIAL1_BAUD
// @DisplayName: Telemetry Baud Rate
// @Description: The baud rate used on the first telemetry port
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial1_baud, "SERIAL1_BAUD", SERIAL1_BAUD/1000),
#if MAVLINK_COMM_NUM_BUFFERS > 2
// @Param: SERIAL2_BAUD
// @DisplayName: Telemetry Baud Rate
// @Description: The baud rate used on the second telemetry port
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial2_baud, "SERIAL2_BAUD", SERIAL2_BAUD/1000),
#endif
// @Param: MAG_ENABLE
// @DisplayName: Enable Compass
// @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(compass_enabled, "MAG_ENABLE", 1),
// @Param: YAW_SLEW_TIME
// @DisplayName: Time for yaw to slew through its full range
// @Description: This controls how rapidly the tracker will change the servo output for yaw. It is set as the number of seconds to do a full rotation. You can use this parameter to slow the trackers movements, which may help with some types of trackers. A value of zero will allow for unlimited servo movement per update.
// @Units: seconds
// @Increment: 0.1
// @Range: 0 20
GSCALAR(yaw_slew_time, "YAW_SLEW_TIME", 2),
// @Param: PITCH_SLEW_TIME
// @DisplayName: Time for pitch to slew through its full range
// @Description: This controls how rapidly the tracker will change the servo output for pitch. It is set as the number of seconds to do a full range of pitch movement. You can use this parameter to slow the trackers movements, which may help with some types of trackers. A value of zero will allow for unlimited servo movement per update.
// @Units: seconds
// @Increment: 0.1
// @Range: 0 20
GSCALAR(pitch_slew_time, "PITCH_SLEW_TIME", 2),
// @Param: SCAN_SPEED
// @DisplayName: Speed at which to rotate in scan mode
// @Description: This controls how rapidly the tracker will move the servos in SCAN mode
// @Units: degrees/second
// @Increment: 1
// @Range: 0 100
GSCALAR(scan_speed, "SCAN_SPEED", 5),
// @Param: MIN_REVERSE_TIME
// @DisplayName: Minimum time to apply a yaw reversal
// @Description: When the tracker detects it has reached the limit of servo movement in yaw it will reverse and try moving to the other extreme of yaw. This parameter controls the minimum time it should reverse for. It is used to cope with trackers that have a significant lag in movement to ensure they do move all the way around.
// @Units: seconds
// @Increment: 1
// @Range: 0 20
GSCALAR(min_reverse_time, "MIN_REVERSE_TIME", 1),
// @Param: START_LATITUDE
// @DisplayName: Initial Latitude before GPS lock
// @Description: Combined with START_LONGITUDE this parameter allows for an initial position of the tracker to be set. This position will be used until the GPS gets lock. It can also be used to run a stationary tracker with no GPS attached.
// @Units: degrees
// @Increment: 0.000001
// @Range: -90 90
GSCALAR(start_latitude, "START_LATITUDE", 0),
// @Param: START_LONGITUDE
// @DisplayName: Initial Longitude before GPS lock
// @Description: Combined with START_LATITUDE this parameter allows for an initial position of the tracker to be set. This position will be used until the GPS gets lock. It can also be used to run a stationary tracker with no GPS attached.
// @Units: degrees
// @Increment: 0.000001
// @Range: -180 180
GSCALAR(start_longitude, "START_LONGITUDE", 0),
// @Param: STARTUP_DELAY
// @DisplayName: Delay before first servo movement from trim
// @Description: This parameter can be used to force the servos to their trim value for a time on startup. This can help with some servo types
// @Units: seconds
// @Increment: 0.1
// @Range: 0 10
GSCALAR(startup_delay, "STARTUP_DELAY", 0),
// barometer ground calibration. The GND_ prefix is chosen for
// compatibility with previous releases of ArduPlane
// @Group: GND_
// @Path: ../libraries/AP_Baro/AP_Baro.cpp
GOBJECT(barometer, "GND_", AP_Baro),
// @Group: COMPASS_
// @Path: ../libraries/AP_Compass/Compass.cpp
GOBJECT(compass, "COMPASS_", Compass),
// @Group: SCHED_
// @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp
GOBJECT(scheduler, "SCHED_", AP_Scheduler),
// @Group: SR0_
// @Path: GCS_Mavlink.pde
GOBJECTN(gcs[0], gcs0, "SR0_", GCS_MAVLINK),
// @Group: SR1_
// @Path: GCS_Mavlink.pde
GOBJECTN(gcs[1], gcs1, "SR1_", GCS_MAVLINK),
#if MAVLINK_COMM_NUM_BUFFERS > 2
// @Group: SR2_
// @Path: GCS_Mavlink.pde
GOBJECTN(gcs[2], gcs2, "SR2_", GCS_MAVLINK),
#endif
// @Group: INS_
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
GOBJECT(ins, "INS_", AP_InertialSensor),
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
// @Group: SIM_
// @Path: ../libraries/SITL/SITL.cpp
GOBJECT(sitl, "SIM_", SITL),
#endif
// @Group: BRD_
// @Path: ../libraries/AP_BoardConfig/AP_BoardConfig.cpp
GOBJECT(BoardConfig, "BRD_", AP_BoardConfig),
// GPS driver
// @Group: GPS_
// @Path: ../libraries/AP_GPS/AP_GPS.cpp
GOBJECT(gps, "GPS_", AP_GPS),
// RC channel
//-----------
// @Group: RC1_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GOBJECT(channel_yaw, "RC1_", RC_Channel),
// @Group: RC2_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GOBJECT(channel_pitch, "RC2_", RC_Channel),
GGROUP(pidPitch2Srv, "PITCH2SRV_", PID),
GGROUP(pidYaw2Srv, "YAW2SRV_", PID),
// @Param: CMD_TOTAL
// @DisplayName: Number of loaded mission items
// @Description: Set to 1 if HOME location has been loaded by the ground station. Do not change this manually.
// @Range: 1 255
// @User: Advanced
GSCALAR(command_total, "CMD_TOTAL", 0),
AP_VAREND
};
static void load_parameters(void)
{
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
// erase all parameters
cliSerial->printf_P(PSTR("Firmware change: erasing EEPROM...\n"));
AP_Param::erase_all();
// save the current format version
g.format_version.set_and_save(Parameters::k_format_version);
cliSerial->println_P(PSTR("done."));
} else {
uint32_t before = hal.scheduler->micros();
// Load all auto-loaded EEPROM variables
AP_Param::load_all();
cliSerial->printf_P(PSTR("load_all took %luus\n"), hal.scheduler->micros() - before);
}
}