ardupilot/ArduCopterMega/Mavlink_Common.h

254 lines
7.5 KiB
C

#ifndef Mavlink_Common_H
#define Mavlink_Common_H
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK || GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
uint16_t system_type = MAV_FIXED_WING;
byte mavdelay = 0;
static uint8_t mavlink_check_target(uint8_t sysid, uint8_t compid)
{
if (sysid != mavlink_system.sysid)
{
return 1;
}
else if (compid != mavlink_system.compid)
{
gcs.send_text(SEVERITY_LOW,"component id mismatch");
return 0; // XXX currently not receiving correct compid from gcs
}
else return 0; // no error
}
/**
* @brief Send low-priority messages at a maximum rate of xx Hertz
*
* This function sends messages at a lower rate to not exceed the wireless
* bandwidth. It sends one message each time it is called until the buffer is empty.
* Call this function with xx Hertz to increase/decrease the bandwidth.
*/
static void mavlink_queued_send(mavlink_channel_t chan)
{
AP_Var *vp;
float value;
// send parameters one by one and prevent cross port comms
if (NULL != global_data.parameter_p && global_data.requested_interface == chan) {
// if the value can't be represented as a float, we will skip it here
vp = global_data.parameter_p;
value = vp->cast_to_float();
if (!isnan(value)) {
char param_name[ONBOARD_PARAM_NAME_LENGTH]; /// XXX HACK
vp->copy_name(param_name, sizeof(param_name));
mavlink_msg_param_value_send(chan,
(int8_t*)param_name,
value,
256,
vp->meta_get_handle());
}
// remember the next variable we're going to send
global_data.parameter_p = vp->next();
}
// this is called at 50hz, count runs to prevent flooding serialport and delayed to allow eeprom write
mavdelay++;
// request waypoints one by one
if (global_data.waypoint_receiving && global_data.requested_interface == chan &&
global_data.waypoint_request_i <= g.waypoint_total && mavdelay > 15) // limits to 3.33 hz
{
mavlink_msg_waypoint_request_send(chan,
global_data.waypoint_dest_sysid,
global_data.waypoint_dest_compid ,global_data.waypoint_request_i);
mavdelay = 0;
}
}
void mavlink_send_message(mavlink_channel_t chan, uint8_t id, uint32_t param, uint16_t packet_drops)
{
uint64_t timeStamp = micros();
switch(id) {
case MSG_HEARTBEAT:
mavlink_msg_heartbeat_send(chan,system_type,MAV_AUTOPILOT_ARDUPILOTMEGA);
break;
case MSG_EXTENDED_STATUS:
{
uint8_t mode = MAV_MODE_UNINIT;
uint8_t nav_mode = MAV_NAV_VECTOR;
switch(control_mode) {
case MANUAL:
mode = MAV_MODE_MANUAL;
break;
case CIRCLE:
mode = MAV_MODE_TEST3;
break;
case STABILIZE:
mode = MAV_MODE_GUIDED;
break;
case FLY_BY_WIRE_A:
mode = MAV_MODE_TEST1;
break;
case FLY_BY_WIRE_B:
mode = MAV_MODE_TEST2;
break;
case AUTO:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_WAYPOINT;
break;
case RTL:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_RETURNING;
break;
case LOITER:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_HOLD;
break;
case TAKEOFF:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_LIFTOFF;
break;
case LAND:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_LANDING;
break;
}
uint8_t status = MAV_STATE_ACTIVE;
uint8_t motor_block = false;
mavlink_msg_sys_status_send(chan,mode,nav_mode,status,load*1000,
battery_voltage1*1000,motor_block,packet_drops);
break;
}
case MSG_ATTITUDE:
{
Vector3f omega = dcm.get_gyro();
mavlink_msg_attitude_send(chan,timeStamp,dcm.roll,dcm.pitch,dcm.yaw,
omega.x,omega.y,omega.z);
break;
}
case MSG_LOCATION:
{
Matrix3f rot = dcm.get_dcm_matrix(); // neglecting angle of attack for now
mavlink_msg_global_position_int_send(chan,current_loc.lat,
current_loc.lng,current_loc.alt*10,g_gps.ground_speed/1.0e2*rot.a.x,
g_gps.ground_speed/1.0e2*rot.b.x,g_gps.ground_speed/1.0e2*rot.c.x);
break;
}
case MSG_LOCAL_LOCATION:
{
Matrix3f rot = dcm.get_dcm_matrix(); // neglecting angle of attack for now
mavlink_msg_local_position_send(chan,timeStamp,ToRad((current_loc.lat-home.lat)/1.0e7)*radius_of_earth,
ToRad((current_loc.lng-home.lng)/1.0e7)*radius_of_earth*cos(ToRad(home.lat/1.0e7)),
(current_loc.alt-home.alt)/1.0e2, g_gps.ground_speed/1.0e2*rot.a.x,
g_gps.ground_speed/1.0e2*rot.b.x,g_gps.ground_speed/1.0e2*rot.c.x);
break;
}
case MSG_GPS_RAW:
{
mavlink_msg_gps_raw_send(chan,timeStamp,g_gps.status(),
g_gps.latitude/1.0e7,g_gps.longitude/1.0e7,g_gps.altitude/100.0,
g_gps.hdop,0.0,g_gps.ground_speed/100.0,g_gps.ground_course/100.0);
break;
}
case MSG_SERVO_OUT:
{
uint8_t rssi = 1;
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with HIL maintainers
mavlink_msg_rc_channels_scaled_send(chan,
10000*rc[0]->norm_output(),
10000*rc[1]->norm_output(),
10000*rc[2]->norm_output(),
10000*rc[3]->norm_output(),
0,0,0,0,rssi);
break;
}
case MSG_RADIO_IN:
{
uint8_t rssi = 1;
mavlink_msg_rc_channels_raw_send(chan,
rc[0]->radio_in,
rc[1]->radio_in,
rc[2]->radio_in,
rc[3]->radio_in,
0/*rc[4]->radio_in*/, // XXX currently only 4 RC channels defined
0/*rc[5]->radio_in*/,
0/*rc[6]->radio_in*/,
0/*rc[7]->radio_in*/,
rssi);
break;
}
case MSG_RADIO_OUT:
{
mavlink_msg_servo_output_raw_send(chan,
rc[0]->radio_out,
rc[1]->radio_out,
rc[2]->radio_out,
rc[3]->radio_out,
0/*rc[4]->radio_out*/, // XXX currently only 4 RC channels defined
0/*rc[5]->radio_out*/,
0/*rc[6]->radio_out*/,
0/*rc[7]->radio_out*/);
break;
}
case MSG_VFR_HUD:
{
mavlink_msg_vfr_hud_send(chan, (float)airspeed/100.0, (float)g_gps.ground_speed/100.0, dcm.yaw_sensor, current_loc.alt/100.0,
climb_rate, (int)rc[CH_THROTTLE]->servo_out);
break;
}
#if HIL_MODE != HIL_MODE_ATTITUDE
case MSG_RAW_IMU:
{
Vector3f accel = imu.get_accel();
Vector3f gyro = imu.get_gyro();
//Serial.printf_P(PSTR("sending accel: %f %f %f\n"), accel.x, accel.y, accel.z);
//Serial.printf_P(PSTR("sending gyro: %f %f %f\n"), gyro.x, gyro.y, gyro.z);
mavlink_msg_raw_imu_send(chan,timeStamp,
accel.x*1000.0/gravity,accel.y*1000.0/gravity,accel.z*1000.0/gravity,
gyro.x*1000.0,gyro.y*1000.0,gyro.z*1000.0,
compass.mag_x,compass.mag_y,compass.mag_z);
mavlink_msg_raw_pressure_send(chan,timeStamp,
adc.Ch(AIRSPEED_CH),barometer.RawPress,0,0);
break;
}
#endif // HIL_PROTOCOL != HIL_PROTOCOL_ATTITUDE
case MSG_GPS_STATUS:
{
mavlink_msg_gps_status_send(chan,g_gps.num_sats,NULL,NULL,NULL,NULL,NULL);
break;
}
case MSG_CURRENT_WAYPOINT:
{
mavlink_msg_waypoint_current_send(chan,g.waypoint_index);
break;
}
defualt:
break;
}
}
void mavlink_send_text(mavlink_channel_t chan, uint8_t severity, const char *str)
{
mavlink_msg_statustext_send(chan,severity,(const int8_t*)str);
}
void mavlink_acknowledge(mavlink_channel_t chan, uint8_t id, uint8_t sum1, uint8_t sum2)
{
}
#endif // mavlink in use
#endif // inclusion guard