ardupilot/libraries/AP_RCProtocol/AP_RCProtocol.cpp

688 lines
20 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include "AP_RCProtocol_config.h"
#include "AP_RCProtocol.h"
#if AP_RCPROTOCOL_ENABLED
#include "AP_RCProtocol_PPMSum.h"
#include "AP_RCProtocol_DSM.h"
#include "AP_RCProtocol_IBUS.h"
#include "AP_RCProtocol_SBUS.h"
#include "AP_RCProtocol_SUMD.h"
#include "AP_RCProtocol_SRXL.h"
#include "AP_RCProtocol_SRXL2.h"
#include "AP_RCProtocol_CRSF.h"
#include "AP_RCProtocol_ST24.h"
#include "AP_RCProtocol_FPort.h"
#include "AP_RCProtocol_FPort2.h"
#include "AP_RCProtocol_DroneCAN.h"
#include "AP_RCProtocol_GHST.h"
#include "AP_RCProtocol_MAVLinkRadio.h"
#include "AP_RCProtocol_Joystick_SFML.h"
#include "AP_RCProtocol_UDP.h"
#include "AP_RCProtocol_FDM.h"
#include "AP_RCProtocol_Radio.h"
#include <AP_Math/AP_Math.h>
#include <RC_Channel/RC_Channel.h>
#include <AP_Vehicle/AP_Vehicle_Type.h>
extern const AP_HAL::HAL& hal;
void AP_RCProtocol::init()
{
#if AP_RCPROTOCOL_PPMSUM_ENABLED
backend[AP_RCProtocol::PPMSUM] = NEW_NOTHROW AP_RCProtocol_PPMSum(*this);
#endif
#if AP_RCPROTOCOL_IBUS_ENABLED
backend[AP_RCProtocol::IBUS] = NEW_NOTHROW AP_RCProtocol_IBUS(*this);
#endif
#if AP_RCPROTOCOL_SBUS_ENABLED
backend[AP_RCProtocol::SBUS] = NEW_NOTHROW AP_RCProtocol_SBUS(*this, true, 100000);
#endif
#if AP_RCPROTOCOL_FASTSBUS_ENABLED
backend[AP_RCProtocol::FASTSBUS] = NEW_NOTHROW AP_RCProtocol_SBUS(*this, true, 200000);
#endif
#if AP_RCPROTOCOL_DSM_ENABLED
backend[AP_RCProtocol::DSM] = NEW_NOTHROW AP_RCProtocol_DSM(*this);
#endif
#if AP_RCPROTOCOL_SUMD_ENABLED
backend[AP_RCProtocol::SUMD] = NEW_NOTHROW AP_RCProtocol_SUMD(*this);
#endif
#if AP_RCPROTOCOL_SRXL_ENABLED
backend[AP_RCProtocol::SRXL] = NEW_NOTHROW AP_RCProtocol_SRXL(*this);
#endif
#if AP_RCPROTOCOL_SBUS_NI_ENABLED
backend[AP_RCProtocol::SBUS_NI] = NEW_NOTHROW AP_RCProtocol_SBUS(*this, false, 100000);
#endif
#if AP_RCPROTOCOL_SRXL2_ENABLED
backend[AP_RCProtocol::SRXL2] = NEW_NOTHROW AP_RCProtocol_SRXL2(*this);
#endif
#if AP_RCPROTOCOL_CRSF_ENABLED
backend[AP_RCProtocol::CRSF] = NEW_NOTHROW AP_RCProtocol_CRSF(*this);
#endif
#if AP_RCPROTOCOL_FPORT2_ENABLED
backend[AP_RCProtocol::FPORT2] = NEW_NOTHROW AP_RCProtocol_FPort2(*this, true);
#endif
#if AP_RCPROTOCOL_ST24_ENABLED
backend[AP_RCProtocol::ST24] = NEW_NOTHROW AP_RCProtocol_ST24(*this);
#endif
#if AP_RCPROTOCOL_FPORT_ENABLED
backend[AP_RCProtocol::FPORT] = NEW_NOTHROW AP_RCProtocol_FPort(*this, true);
#endif
#if AP_RCPROTOCOL_DRONECAN_ENABLED
backend[AP_RCProtocol::DRONECAN] = NEW_NOTHROW AP_RCProtocol_DroneCAN(*this);
#endif
#if AP_RCPROTOCOL_GHST_ENABLED
backend[AP_RCProtocol::GHST] = NEW_NOTHROW AP_RCProtocol_GHST(*this);
#endif
#if AP_RCPROTOCOL_MAVLINK_RADIO_ENABLED
backend[AP_RCProtocol::MAVLINK_RADIO] = NEW_NOTHROW AP_RCProtocol_MAVLinkRadio(*this);
#endif
#if AP_RCPROTOCOL_JOYSTICK_SFML_ENABLED
backend[AP_RCProtocol::JOYSTICK_SFML] = NEW_NOTHROW AP_RCProtocol_Joystick_SFML(*this);
#endif
#if AP_RCPROTOCOL_UDP_ENABLED
const auto UDP_backend = NEW_NOTHROW AP_RCProtocol_UDP(*this);
backend[AP_RCProtocol::UDP] = UDP_backend;
#endif
#if AP_RCPROTOCOL_FDM_ENABLED
const auto FDM_backend = NEW_NOTHROW AP_RCProtocol_FDM(*this);;
backend[AP_RCProtocol::FDM] = FDM_backend;
#if AP_RCPROTOCOL_UDP_ENABLED
// the UDP-Packed16Bit backend gives way to the FDM backend:
UDP_backend->set_fdm_backend(FDM_backend);
#endif // AP_RCPROTOCOL_UDP_ENABLED
#endif // AP_RCPROTOCOL_FDM_ENABLED
#if AP_RCPROTOCOL_RADIO_ENABLED
backend[AP_RCProtocol::RADIO] = NEW_NOTHROW AP_RCProtocol_Radio(*this);
#endif
}
AP_RCProtocol::~AP_RCProtocol()
{
for (uint8_t i = 0; i < ARRAY_SIZE(backend); i++) {
if (backend[i] != nullptr) {
delete backend[i];
backend[i] = nullptr;
}
}
}
bool AP_RCProtocol::should_search(uint32_t now_ms) const
{
#if AP_RCPROTOCOL_FDM_ENABLED && AP_RCPROTOCOL_UDP_ENABLED
// force re-detection when FDM is active and active backend is UDP values
if (_detected_protocol == AP_RCProtocol::UDP &&
((AP_RCProtocol_FDM*)backend[AP_RCProtocol::FDM])->active()) {
return true;
}
#endif // AP_RCPROTOCOL_FDM_ENABLED && AP_RCPROTOCOL_UDP_ENABLED
#if AP_RC_CHANNEL_ENABLED && !APM_BUILD_TYPE(APM_BUILD_UNKNOWN)
if (_detected_protocol != AP_RCProtocol::NONE && !rc().option_is_enabled(RC_Channels::Option::MULTI_RECEIVER_SUPPORT)) {
return false;
}
#else
// on IOMCU don't allow protocol to change once detected
if (_detected_protocol != AP_RCProtocol::NONE) {
return false;
}
#endif
return (now_ms - _last_input_ms >= 200);
}
void AP_RCProtocol::process_pulse(uint32_t width_s0, uint32_t width_s1)
{
uint32_t now = AP_HAL::millis();
bool searching = should_search(now);
#if AP_RC_CHANNEL_ENABLED
rc_protocols_mask = rc().enabled_protocols();
#endif
if (_detected_protocol != AP_RCProtocol::NONE &&
!protocol_enabled(_detected_protocol)) {
_detected_protocol = AP_RCProtocol::NONE;
}
if (_detected_protocol != AP_RCProtocol::NONE && _detected_with_bytes && !searching) {
// we're using byte inputs, discard pulses
return;
}
// first try current protocol
if (_detected_protocol != AP_RCProtocol::NONE && !searching) {
backend[_detected_protocol]->process_pulse(width_s0, width_s1);
if (backend[_detected_protocol]->new_input()) {
_new_input = true;
_last_input_ms = now;
}
return;
}
// otherwise scan all protocols
for (uint8_t i = 0; i < ARRAY_SIZE(backend); i++) {
if (_disabled_for_pulses & (1U << i)) {
// this protocol is disabled for pulse input
continue;
}
if (backend[i] != nullptr) {
if (!protocol_enabled(rcprotocol_t(i))) {
continue;
}
const uint32_t frame_count = backend[i]->get_rc_frame_count();
const uint32_t input_count = backend[i]->get_rc_input_count();
backend[i]->process_pulse(width_s0, width_s1);
const uint32_t frame_count2 = backend[i]->get_rc_frame_count();
if (frame_count2 > frame_count) {
if (requires_3_frames((rcprotocol_t)i) && frame_count2 < 3) {
continue;
}
_new_input = (input_count != backend[i]->get_rc_input_count());
_detected_protocol = (enum AP_RCProtocol::rcprotocol_t)i;
for (uint8_t j = 0; j < ARRAY_SIZE(backend); j++) {
if (backend[j]) {
backend[j]->reset_rc_frame_count();
}
}
_last_input_ms = now;
_detected_with_bytes = false;
break;
}
}
}
}
/*
process an array of pulses. n must be even
*/
void AP_RCProtocol::process_pulse_list(const uint32_t *widths, uint16_t n, bool need_swap)
{
if (n & 1) {
return;
}
while (n) {
uint32_t widths0 = widths[0];
uint32_t widths1 = widths[1];
if (need_swap) {
uint32_t tmp = widths1;
widths1 = widths0;
widths0 = tmp;
}
widths1 -= widths0;
process_pulse(widths0, widths1);
widths += 2;
n -= 2;
}
}
bool AP_RCProtocol::process_byte(uint8_t byte, uint32_t baudrate)
{
uint32_t now = AP_HAL::millis();
bool searching = should_search(now);
#if AP_RC_CHANNEL_ENABLED
rc_protocols_mask = rc().enabled_protocols();
#endif
if (_detected_protocol != AP_RCProtocol::NONE &&
!protocol_enabled(_detected_protocol)) {
_detected_protocol = AP_RCProtocol::NONE;
}
if (_detected_protocol != AP_RCProtocol::NONE && !_detected_with_bytes && !searching) {
// we're using pulse inputs, discard bytes
return false;
}
// first try current protocol
if (_detected_protocol != AP_RCProtocol::NONE && !searching) {
backend[_detected_protocol]->process_byte(byte, baudrate);
if (backend[_detected_protocol]->new_input()) {
_new_input = true;
_last_input_ms = now;
}
return true;
}
// otherwise scan all protocols
for (uint8_t i = 0; i < ARRAY_SIZE(backend); i++) {
if (backend[i] != nullptr) {
if (!protocol_enabled(rcprotocol_t(i))) {
continue;
}
const uint32_t frame_count = backend[i]->get_rc_frame_count();
const uint32_t input_count = backend[i]->get_rc_input_count();
backend[i]->process_byte(byte, baudrate);
const uint32_t frame_count2 = backend[i]->get_rc_frame_count();
if (frame_count2 > frame_count) {
if (requires_3_frames((rcprotocol_t)i) && frame_count2 < 3) {
continue;
}
_new_input = (input_count != backend[i]->get_rc_input_count());
_detected_protocol = (enum AP_RCProtocol::rcprotocol_t)i;
_last_input_ms = now;
_detected_with_bytes = true;
for (uint8_t j = 0; j < ARRAY_SIZE(backend); j++) {
if (backend[j]) {
backend[j]->reset_rc_frame_count();
}
}
// stop decoding pulses to save CPU
hal.rcin->pulse_input_enable(false);
return true;
}
}
}
return false;
}
// handshake if nothing else has succeeded so far
void AP_RCProtocol::process_handshake( uint32_t baudrate)
{
// if we ever succeeded before then do not handshake
if (_detected_protocol != AP_RCProtocol::NONE || _last_input_ms > 0) {
return;
}
// otherwise handshake all protocols
for (uint8_t i = 0; i < ARRAY_SIZE(backend); i++) {
if (backend[i] != nullptr) {
backend[i]->process_handshake(baudrate);
}
}
}
/*
check for bytes from an additional uart. This is used to support RC
protocols from SERIALn_PROTOCOL
*/
void AP_RCProtocol::SerialConfig::apply_to_uart(AP_HAL::UARTDriver *uart) const
{
uart->configure_parity(parity);
uart->set_stop_bits(stop_bits);
if (invert_rx) {
uart->set_options(uart->get_options() | AP_HAL::UARTDriver::OPTION_RXINV);
} else {
uart->set_options(uart->get_options() & ~AP_HAL::UARTDriver::OPTION_RXINV);
}
uart->begin(baud, 128, 128);
}
static const AP_RCProtocol::SerialConfig serial_configs[] {
// BAUD PRTY STOP INVERT-RX
// inverted and uninverted 115200 8N1:
{ 115200, 0, 1, false },
{ 115200, 0, 1, true },
// SBUS settings, even parity, 2 stop bits:
{ 100000, 2, 2, true },
#if AP_RCPROTOCOL_FASTSBUS_ENABLED
// FastSBUS:
{ 200000, 2, 2, true },
#endif
#if AP_RCPROTOCOL_CRSF_ENABLED || AP_RCPROTOCOL_GHST_ENABLED
// CrossFire:
{ 416666, 0, 1, false },
// CRSFv3 can negotiate higher rates which are sticky on soft reboot
{ 2000000, 0, 1, false },
#endif
};
static_assert(ARRAY_SIZE(serial_configs) > 1, "must have at least one serial config");
void AP_RCProtocol::check_added_uart(void)
{
if (!added.uart) {
return;
}
uint32_t now = AP_HAL::millis();
bool searching = should_search(now);
if (!searching && !_detected_with_bytes) {
// not using this uart
return;
}
if (!added.opened) {
added.opened = true;
added.last_config_change_ms = AP_HAL::millis();
serial_configs[added.config_num].apply_to_uart(added.uart);
}
#if AP_RC_CHANNEL_ENABLED
rc_protocols_mask = rc().enabled_protocols();
#endif
const uint32_t current_baud = serial_configs[added.config_num].baud;
process_handshake(current_baud);
uint32_t n = added.uart->available();
n = MIN(n, 255U);
for (uint8_t i=0; i<n; i++) {
int16_t b = added.uart->read();
if (b >= 0) {
process_byte(uint8_t(b), current_baud);
}
}
if (searching) {
if (now - added.last_config_change_ms > 1000) {
// change configs if not detected once a second
added.config_num++;
if (added.config_num >= ARRAY_SIZE(serial_configs)) {
added.config_num = 0;
}
added.opened = false;
}
// power loss on CRSF requires re-bootstrap because the baudrate is reset to the default. The CRSF side will
// drop back down to 416k if it has received 200 incorrect characters (or none at all)
} else if (_detected_protocol != AP_RCProtocol::NONE
// protocols that want to be able to renegotiate should return false in is_rx_active()
&& !backend[_detected_protocol]->is_rx_active()
&& now - added.last_config_change_ms > 1000) {
added.opened = false;
}
}
void AP_RCProtocol::update()
{
check_added_uart();
}
// explicitly investigate a backend for data, as opposed to feeding
// the backend a byte (or pulse-train) at a time and having them make
// an "add_input" callback):
bool AP_RCProtocol::detect_async_protocol(rcprotocol_t protocol)
{
auto *p = backend[protocol];
if (p == nullptr) {
// backend is not allocated?!
return false;
}
if (_detected_protocol == protocol) {
// we are using this protocol already, see if there is new
// data. Caller will handle the case where we stop presenting
// data
return p->new_input();
}
// we are not the currently in-use protocol.
const uint32_t now = AP_HAL::millis();
// see if another backend is providing data:
if (!should_search(now)) {
// apparently, yes
return false;
}
#if AP_RC_CHANNEL_ENABLED
rc_protocols_mask = rc().enabled_protocols();
#endif
if (!protocol_enabled(protocol)) {
return false;
}
// nobody is providing data; can we provide data?
if (!p->new_input()) {
// we can't provide data
return false;
}
// we can provide data, change the detected protocol to be us:
_detected_protocol = protocol;
return true;
}
bool AP_RCProtocol::new_input()
{
// if we have an extra UART from a SERIALn_PROTOCOL then check it for data
check_added_uart();
// run update function on backends
for (uint8_t i = 0; i < ARRAY_SIZE(backend); i++) {
if (backend[i] != nullptr) {
backend[i]->update();
}
}
// iterate through backends which don't do either of pulse or uart
// input, and thus won't update_new_input
const rcprotocol_t pollable[] {
#if AP_RCPROTOCOL_DRONECAN_ENABLED
AP_RCProtocol::DRONECAN,
#endif
#if AP_RCPROTOCOL_MAVLINK_RADIO_ENABLED
AP_RCProtocol::MAVLINK_RADIO,
#endif
#if AP_RCPROTOCOL_JOYSTICK_SFML_ENABLED
AP_RCProtocol::JOYSTICK_SFML,
#endif
#if AP_RCPROTOCOL_UDP_ENABLED
AP_RCProtocol::UDP,
#endif
#if AP_RCPROTOCOL_FDM_ENABLED
AP_RCProtocol::FDM,
#endif
#if AP_RCPROTOCOL_RADIO_ENABLED
AP_RCProtocol::RADIO,
#endif
};
for (const auto protocol : pollable) {
if (!detect_async_protocol(protocol)) {
continue;
}
_new_input = true;
_last_input_ms = AP_HAL::millis();
break;
}
bool ret = _new_input;
_new_input = false;
return ret;
}
uint8_t AP_RCProtocol::num_channels()
{
if (_detected_protocol != AP_RCProtocol::NONE) {
return backend[_detected_protocol]->num_channels();
}
return 0;
}
uint16_t AP_RCProtocol::read(uint8_t chan)
{
if (_detected_protocol != AP_RCProtocol::NONE) {
return backend[_detected_protocol]->read(chan);
}
return 0;
}
void AP_RCProtocol::read(uint16_t *pwm, uint8_t n)
{
if (_detected_protocol != AP_RCProtocol::NONE) {
backend[_detected_protocol]->read(pwm, n);
}
}
int16_t AP_RCProtocol::get_RSSI(void) const
{
if (_detected_protocol != AP_RCProtocol::NONE) {
return backend[_detected_protocol]->get_RSSI();
}
return -1;
}
int16_t AP_RCProtocol::get_rx_link_quality(void) const
{
if (_detected_protocol != AP_RCProtocol::NONE) {
return backend[_detected_protocol]->get_rx_link_quality();
}
return -1;
}
/*
ask for bind start on supported receivers (eg spektrum satellite)
*/
void AP_RCProtocol::start_bind(void)
{
for (uint8_t i = 0; i < ARRAY_SIZE(backend); i++) {
if (backend[i] != nullptr) {
backend[i]->start_bind();
}
}
}
#endif // AP_RCPROTOCOL_ENABLED
/*
return protocol name
*/
const char *AP_RCProtocol::protocol_name_from_protocol(rcprotocol_t protocol)
{
switch (protocol) {
#if AP_RCPROTOCOL_PPMSUM_ENABLED
case PPMSUM:
return "PPM";
#endif
#if AP_RCPROTOCOL_IBUS_ENABLED
case IBUS:
return "IBUS";
#endif
#if AP_RCPROTOCOL_SBUS_ENABLED
case SBUS:
return "SBUS";
#endif
#if AP_RCPROTOCOL_SBUS_NI_ENABLED
case SBUS_NI:
return "SBUS";
#endif
#if AP_RCPROTOCOL_FASTSBUS_ENABLED
case FASTSBUS:
return "FastSBUS";
#endif
#if AP_RCPROTOCOL_DSM_ENABLED
case DSM:
return "DSM";
#endif
#if AP_RCPROTOCOL_SUMD_ENABLED
case SUMD:
return "SUMD";
#endif
#if AP_RCPROTOCOL_SRXL_ENABLED
case SRXL:
return "SRXL";
#endif
#if AP_RCPROTOCOL_SRXL2_ENABLED
case SRXL2:
return "SRXL2";
#endif
#if AP_RCPROTOCOL_CRSF_ENABLED
case CRSF:
return "CRSF";
#endif
#if AP_RCPROTOCOL_ST24_ENABLED
case ST24:
return "ST24";
#endif
#if AP_RCPROTOCOL_FPORT_ENABLED
case FPORT:
return "FPORT";
#endif
#if AP_RCPROTOCOL_FPORT2_ENABLED
case FPORT2:
return "FPORT2";
#endif
#if AP_RCPROTOCOL_DRONECAN_ENABLED
case DRONECAN:
return "DroneCAN";
#endif
#if AP_RCPROTOCOL_GHST_ENABLED
case GHST:
return "GHST";
#endif
#if AP_RCPROTOCOL_MAVLINK_RADIO_ENABLED
case MAVLINK_RADIO:
return "MAVRadio";
#endif
#if AP_RCPROTOCOL_JOYSTICK_SFML_ENABLED
case JOYSTICK_SFML:
return "SFML";
#endif
#if AP_RCPROTOCOL_UDP_ENABLED
case UDP:
return "UDP";
#endif
#if AP_RCPROTOCOL_FDM_ENABLED
case FDM:
return "FDM";
#endif
#if AP_RCPROTOCOL_RADIO_ENABLED
case RADIO:
return "Radio";
#endif
case NONE:
break;
}
return nullptr;
}
#if AP_RCPROTOCOL_ENABLED
/*
return protocol name
*/
const char *AP_RCProtocol::protocol_name(void) const
{
return protocol_name_from_protocol(_detected_protocol);
}
/*
add a uart to decode
*/
void AP_RCProtocol::add_uart(AP_HAL::UARTDriver* uart)
{
added.uart = uart;
added.uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
}
// return true if a specific protocol is enabled
bool AP_RCProtocol::protocol_enabled(rcprotocol_t protocol) const
{
if ((rc_protocols_mask & 1U) != 0) {
// all protocols enabled
return true;
}
return ((1U<<(uint8_t(protocol)+1)) & rc_protocols_mask) != 0;
}
#if AP_RCPROTOCOL_MAVLINK_RADIO_ENABLED
void AP_RCProtocol::handle_radio_rc_channels(const mavlink_radio_rc_channels_t* packet)
{
if (backend[AP_RCProtocol::MAVLINK_RADIO] == nullptr) {
return;
}
backend[AP_RCProtocol::MAVLINK_RADIO]->update_radio_rc_channels(packet);
};
#endif // AP_RCPROTOCOL_MAVLINK_RADIO_ENABLED
namespace AP {
AP_RCProtocol &RC()
{
static AP_RCProtocol rcprot;
return rcprot;
}
};
#endif // AP_RCPROTOCOL_ENABLED