ardupilot/libraries/AP_Frsky_Telem/AP_Frsky_SPort.cpp
yaapu 870c280946 AP_Frsky_Telem: upgraded SERIAL_PROTOCOL 4 telemetry to 2 bytes data IDs
This upgrades standard SPort telemetry from older 1byte IDs to newer 2bytes IDs.

Older 1 byte data IDs are not supported by the FRSky ETHOS ecosystem so this
migration is required to allow ArduPilot to seamlessly work with ETHOS.
This migration requires users to do a new sensor discovery in OpenTX.
2021-06-02 17:33:15 +10:00

463 lines
17 KiB
C++

#include "AP_Frsky_SPort.h"
#include <AP_HAL/utility/sparse-endian.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_GPS/AP_GPS.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_RPM/AP_RPM.h>
#include "AP_Frsky_SPortParser.h"
#include <string.h>
extern const AP_HAL::HAL& hal;
AP_Frsky_SPort *AP_Frsky_SPort::singleton;
/*
* send telemetry data
* for FrSky SPort protocol (X-receivers)
*/
void AP_Frsky_SPort::send(void)
{
const uint16_t numc = MIN(_port->available(), 1024U);
// this is the constant for hub data frame
if (_port->txspace() < 19) {
return;
}
if (numc == 0) {
// no serial data to process do bg tasks
if (_SPort.vario_refresh) {
calc_nav_alt(); // nav altitude is not recalculated until all of it has been sent
_SPort.vario_refresh = false;
}
if (_SPort.gps_refresh) {
calc_gps_position(); // gps data is not recalculated until all of it has been sent
_SPort.gps_refresh = false;
}
return;
}
for (int16_t i = 0; i < numc; i++) {
int16_t readbyte = _port->read();
if (_SPort.sport_status == false) {
if (readbyte == FRAME_HEAD) {
_SPort.sport_status = true;
}
} else {
const AP_BattMonitor &_battery = AP::battery();
switch (readbyte) {
case SENSOR_ID_VARIO: // Sensor ID 0
switch (_SPort.vario_call) {
case 0:
send_sport_frame(SPORT_DATA_FRAME, ALT_ID, _SPort_data.alt_nav_meters*100 + _SPort_data.alt_nav_cm); // send altitude in cm
break;
case 1:
send_sport_frame(SPORT_DATA_FRAME, VARIO_ID, _SPort_data.vario_vspd); // send vspeed cm/s
_SPort.vario_refresh = true;
break;
}
if (++_SPort.vario_call > 1) {
_SPort.vario_call = 0;
}
break;
case SENSOR_ID_FAS: // Sensor ID 2
switch (_SPort.fas_call) {
case 0:
send_sport_frame(SPORT_DATA_FRAME, FUEL_ID, (uint16_t)roundf(_battery.capacity_remaining_pct())); // send battery remaining as %
break;
case 1:
send_sport_frame(SPORT_DATA_FRAME, VFAS_ID, (uint16_t)roundf(_battery.voltage() * 100.0f)); // send battery voltage in cV
break;
case 2: {
float current;
if (!_battery.current_amps(current)) {
current = 0;
}
send_sport_frame(SPORT_DATA_FRAME, CURR_ID, (uint16_t)roundf(current * 10.0f)); // send current consumption in dA
break;
}
break;
}
if (++_SPort.fas_call > 2) {
_SPort.fas_call = 0;
}
break;
case SENSOR_ID_GPS: // Sensor ID 3
switch (_SPort.gps_call) {
case 0:
send_sport_frame(SPORT_DATA_FRAME, GPS_LONG_LATI_FIRST_ID, calc_gps_latlng(_passthrough.send_latitude)); // gps latitude or longitude
break;
case 1:
send_sport_frame(SPORT_DATA_FRAME, GPS_LONG_LATI_FIRST_ID, calc_gps_latlng(_passthrough.send_latitude)); // gps latitude or longitude
break;
case 2:
send_sport_frame(SPORT_DATA_FRAME, GPS_SPEED_ID, _SPort_data.speed_in_meter*1000 + _SPort_data.speed_in_centimeter*10); // send gps speed in mm/sec
break;
case 3:
send_sport_frame(SPORT_DATA_FRAME, GPS_ALT_ID, _SPort_data.alt_gps_meters*100+_SPort_data.alt_gps_cm); // send gps altitude in cm
break;
case 4:
send_sport_frame(SPORT_DATA_FRAME, GPS_COURS_ID, _SPort_data.yaw*100); // send heading in cd based on AHRS and not GPS
_SPort.gps_refresh = true;
break;
}
if (++_SPort.gps_call > 4) {
_SPort.gps_call = 0;
}
break;
case SENSOR_ID_RPM: // Sensor ID 4
{
const AP_RPM* rpm = AP::rpm();
if (rpm == nullptr) {
break;
}
int32_t value;
if (calc_rpm(_SPort.rpm_call, value)) {
// use high numbered frsky sensor ids to leave low numbered free for externally attached physical frsky sensors
uint16_t id = RPM1_ID;
if (_SPort.rpm_call != 0) {
// only two sensors are currently supported
id = RPM2_ID;
}
send_sport_frame(SPORT_DATA_FRAME, id, value);
}
if (++_SPort.rpm_call > MIN(rpm->num_sensors()-1, 1)) {
_SPort.rpm_call = 0;
}
}
break;
case SENSOR_ID_SP2UR: // Sensor ID 6
switch (_SPort.various_call) {
case 0 :
send_sport_frame(SPORT_DATA_FRAME, TEMP2_ID, (uint16_t)(AP::gps().num_sats() * 10 + AP::gps().status())); // send GPS status and number of satellites as num_sats*10 + status (to fit into a uint8_t)
break;
case 1:
send_sport_frame(SPORT_DATA_FRAME, TEMP1_ID, gcs().custom_mode()); // send flight mode
break;
}
if (++_SPort.various_call > 1) {
_SPort.various_call = 0;
}
break;
default:
{
// respond to custom user data polling
WITH_SEMAPHORE(_sport_push_buffer.sem);
if (_sport_push_buffer.pending && readbyte == _sport_push_buffer.packet.sensor) {
send_sport_frame(_sport_push_buffer.packet.frame, _sport_push_buffer.packet.appid, _sport_push_buffer.packet.data);
_sport_push_buffer.pending = false;
}
}
break;
}
_SPort.sport_status = false;
}
}
}
/*
* prepare gps latitude/longitude data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_SPort::calc_gps_latlng(bool &send_latitude)
{
const Location &loc = AP::gps().location(0); // use the first gps instance (same as in send_mavlink_gps_raw)
// alternate between latitude and longitude
if (send_latitude == true) {
send_latitude = false;
if (loc.lat < 0) {
return ((labs(loc.lat)/100)*6) | 0x40000000;
} else {
return ((labs(loc.lat)/100)*6);
}
} else {
send_latitude = true;
if (loc.lng < 0) {
return ((labs(loc.lng)/100)*6) | 0xC0000000;
} else {
return ((labs(loc.lng)/100)*6) | 0x80000000;
}
}
}
/*
* send an 8 bytes SPort frame of FrSky data - for FrSky SPort protocol (X-receivers)
*/
void AP_Frsky_SPort::send_sport_frame(uint8_t frame, uint16_t appid, uint32_t data)
{
uint8_t buf[8];
buf[0] = frame;
buf[1] = appid & 0xFF;
buf[2] = appid >> 8;
memcpy(&buf[3], &data, 4);
uint16_t sum = 0;
for (uint8_t i=0; i<sizeof(buf)-1; i++) {
sum += buf[i];
sum += sum >> 8;
sum &= 0xFF;
}
sum = 0xff - ((sum & 0xff) + (sum >> 8));
buf[7] = (uint8_t)sum;
// perform byte stuffing per SPort spec
uint8_t len = 0;
uint8_t buf2[sizeof(buf)*2+1];
for (uint8_t i=0; i<sizeof(buf); i++) {
uint8_t c = buf[i];
if (c == FRAME_DLE || buf[i] == FRAME_HEAD) {
buf2[len++] = FRAME_DLE;
buf2[len++] = c ^ FRAME_XOR;
} else {
buf2[len++] = c;
}
}
#ifndef HAL_BOARD_SITL
/*
check that we haven't been too slow in responding to the new
UART data. If we respond too late then we will overwrite the next
polling frame.
SPort poll-to-poll period is 11.65ms, a frame takes 1.38ms
but specs require we release the bus before 8ms leaving us with 6500us
*/
const uint64_t tend_us = port->receive_time_constraint_us(1);
const uint64_t now_us = AP_HAL::micros64();
const uint64_t tdelay_us = now_us - tend_us;
if (tdelay_us > 6500) {
// we've been too slow in responding
return;
}
#endif
_port->write(buf2, len);
}
extern const AP_HAL::HAL& hal;
bool AP_Frsky_SPortParser::should_process_packet(const uint8_t *packet, bool discard_duplicates)
{
// check for duplicate packets
if (discard_duplicates && _parse_state.last_packet != nullptr) {
/*
Note: the polling byte packet[0] should be ignored in the comparison
because we might get the same packet with different polling bytes
We have 2 types of duplicate packets: ghost identical packets sent by the receiver
and user duplicate packets sent to compensate for bad link and frame loss, this
check should address both types.
*/
if (memcmp(&packet[1], &_parse_state.last_packet[1], SPORT_PACKET_SIZE-1) == 0) {
return false;
}
memcpy(_parse_state.last_packet, packet, SPORT_PACKET_SIZE);
}
//check CRC
int16_t crc = 0;
for (uint8_t i=1; i<SPORT_PACKET_SIZE; ++i) {
crc += _parse_state.rx_buffer[i]; // 0-1FE
crc += crc >> 8; // 0-1FF
crc &= 0x00ff; // 0-FF
}
return (crc == 0x00ff);
}
bool AP_Frsky_SPortParser::process_byte(AP_Frsky_SPort::sport_packet_t &sport_packet, const uint8_t data)
{
switch (_parse_state.state) {
case ParseState::START:
if (_parse_state.rx_buffer_count < TELEMETRY_RX_BUFFER_SIZE) {
_parse_state.rx_buffer[_parse_state.rx_buffer_count++] = data;
}
_parse_state.state = ParseState::IN_FRAME;
break;
case ParseState::IN_FRAME:
if (data == FRAME_DLE) {
_parse_state.state = ParseState::XOR; // XOR next byte
} else if (data == FRAME_HEAD) {
_parse_state.state = ParseState::IN_FRAME ;
_parse_state.rx_buffer_count = 0;
break;
} else if (_parse_state.rx_buffer_count < TELEMETRY_RX_BUFFER_SIZE) {
_parse_state.rx_buffer[_parse_state.rx_buffer_count++] = data;
}
break;
case ParseState::XOR:
if (_parse_state.rx_buffer_count < TELEMETRY_RX_BUFFER_SIZE) {
_parse_state.rx_buffer[_parse_state.rx_buffer_count++] = data ^ STUFF_MASK;
}
_parse_state.state = ParseState::IN_FRAME;
break;
case ParseState::IDLE:
if (data == FRAME_HEAD) {
_parse_state.rx_buffer_count = 0;
_parse_state.state = ParseState::START;
}
break;
} // switch
if (_parse_state.rx_buffer_count >= SPORT_PACKET_SIZE) {
_parse_state.rx_buffer_count = 0;
_parse_state.state = ParseState::IDLE;
// feed the packet only if it's not a duplicate
return get_packet(sport_packet, true);
}
return false;
}
bool AP_Frsky_SPortParser::get_packet(AP_Frsky_SPort::sport_packet_t &sport_packet, bool discard_duplicates)
{
if (!should_process_packet(_parse_state.rx_buffer, discard_duplicates)) {
return false;
}
const AP_Frsky_SPort::sport_packet_t sp {
_parse_state.rx_buffer[0],
_parse_state.rx_buffer[1],
le16toh_ptr(&_parse_state.rx_buffer[2]),
le32toh_ptr(&_parse_state.rx_buffer[4])
};
sport_packet = sp;
return true;
}
/*
* Calculates the sensor id from the physical sensor index [0-27]
0x00, // Physical ID 0 - Vario2 (altimeter high precision)
0xA1, // Physical ID 1 - FLVSS Lipo sensor
0x22, // Physical ID 2 - FAS-40S current sensor
0x83, // Physical ID 3 - GPS / altimeter (normal precision)
0xE4, // Physical ID 4 - RPM
0x45, // Physical ID 5 - SP2UART(Host)
0xC6, // Physical ID 6 - SPUART(Remote)
0x67, // Physical ID 7 - Ardupilot/Betaflight EXTRA DOWNLINK
0x48, // Physical ID 8 -
0xE9, // Physical ID 9 -
0x6A, // Physical ID 10 -
0xCB, // Physical ID 11 -
0xAC, // Physical ID 12 -
0x0D, // Physical ID 13 - Ardupilot/Betaflight UPLINK
0x8E, // Physical ID 14 -
0x2F, // Physical ID 15 -
0xD0, // Physical ID 16 -
0x71, // Physical ID 17 -
0xF2, // Physical ID 18 -
0x53, // Physical ID 19 -
0x34, // Physical ID 20 - Ardupilot/Betaflight EXTRA DOWNLINK
0x95, // Physical ID 21 -
0x16, // Physical ID 22 - GAS Suite
0xB7, // Physical ID 23 - IMU ACC (x,y,z)
0x98, // Physical ID 24 -
0x39, // Physical ID 25 - Power Box
0xBA // Physical ID 26 - Temp
0x1B // Physical ID 27 - ArduPilot/Betaflight DEFAULT DOWNLINK
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
#define BIT(x, index) (((x) >> index) & 0x01)
uint8_t AP_Frsky_SPort::calc_sensor_id(const uint8_t physical_id)
{
uint8_t result = physical_id;
result += (BIT(physical_id, 0) ^ BIT(physical_id, 1) ^ BIT(physical_id, 2)) << 5;
result += (BIT(physical_id, 2) ^ BIT(physical_id, 3) ^ BIT(physical_id, 4)) << 6;
result += (BIT(physical_id, 0) ^ BIT(physical_id, 2) ^ BIT(physical_id, 4)) << 7;
return result;
}
/*
* prepare value for transmission through FrSky link
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint16_t AP_Frsky_SPort::prep_number(int32_t number, uint8_t digits, uint8_t power)
{
uint16_t res = 0;
uint32_t abs_number = abs(number);
if ((digits == 2) && (power == 1)) { // number encoded on 8 bits: 7 bits for digits + 1 for 10^power
if (abs_number < 100) {
res = abs_number<<1;
} else if (abs_number < 1270) {
res = ((uint8_t)roundf(abs_number * 0.1f)<<1)|0x1;
} else { // transmit max possible value (0x7F x 10^1 = 1270)
res = 0xFF;
}
if (number < 0) { // if number is negative, add sign bit in front
res |= 0x1<<8;
}
} else if ((digits == 2) && (power == 2)) { // number encoded on 9 bits: 7 bits for digits + 2 for 10^power
if (abs_number < 100) {
res = abs_number<<2;
} else if (abs_number < 1000) {
res = ((uint8_t)roundf(abs_number * 0.1f)<<2)|0x1;
} else if (abs_number < 10000) {
res = ((uint8_t)roundf(abs_number * 0.01f)<<2)|0x2;
} else if (abs_number < 127000) {
res = ((uint8_t)roundf(abs_number * 0.001f)<<2)|0x3;
} else { // transmit max possible value (0x7F x 10^3 = 127000)
res = 0x1FF;
}
if (number < 0) { // if number is negative, add sign bit in front
res |= 0x1<<9;
}
} else if ((digits == 3) && (power == 1)) { // number encoded on 11 bits: 10 bits for digits + 1 for 10^power
if (abs_number < 1000) {
res = abs_number<<1;
} else if (abs_number < 10240) {
res = ((uint16_t)roundf(abs_number * 0.1f)<<1)|0x1;
} else { // transmit max possible value (0x3FF x 10^1 = 10240)
res = 0x7FF;
}
if (number < 0) { // if number is negative, add sign bit in front
res |= 0x1<<11;
}
} else if ((digits == 3) && (power == 2)) { // number encoded on 12 bits: 10 bits for digits + 2 for 10^power
if (abs_number < 1000) {
res = abs_number<<2;
} else if (abs_number < 10000) {
res = ((uint16_t)roundf(abs_number * 0.1f)<<2)|0x1;
} else if (abs_number < 100000) {
res = ((uint16_t)roundf(abs_number * 0.01f)<<2)|0x2;
} else if (abs_number < 1024000) {
res = ((uint16_t)roundf(abs_number * 0.001f)<<2)|0x3;
} else { // transmit max possible value (0x3FF x 10^3 = 127000)
res = 0xFFF;
}
if (number < 0) { // if number is negative, add sign bit in front
res |= 0x1<<12;
}
}
return res;
}
/*
* Push user data down the telemetry link by responding to sensor polling (sport)
* or by using dedicated slots in the scheduler (fport)
* for SPort and FPort protocols (X-receivers)
*/
bool AP_Frsky_SPort::sport_telemetry_push(uint8_t sensor, uint8_t frame, uint16_t appid, int32_t data)
{
WITH_SEMAPHORE(_sport_push_buffer.sem);
if (_sport_push_buffer.pending) {
return false;
}
_sport_push_buffer.packet.sensor = sensor;
_sport_push_buffer.packet.frame = frame;
_sport_push_buffer.packet.appid = appid;
_sport_push_buffer.packet.data = static_cast<uint32_t>(data);
_sport_push_buffer.pending = true;
return true;
}
namespace AP {
AP_Frsky_SPort *frsky_sport() {
return AP_Frsky_SPort::get_singleton();
}
};