ardupilot/Blimp/AP_Arming.cpp
2021-05-05 19:48:03 +10:00

469 lines
15 KiB
C++

#include "Blimp.h"
// performs pre-arm checks. expects to be called at 1hz.
void AP_Arming_Blimp::update(void)
{
// perform pre-arm checks & display failures every 30 seconds
static uint8_t pre_arm_display_counter = PREARM_DISPLAY_PERIOD/2;
pre_arm_display_counter++;
bool display_fail = false;
if (pre_arm_display_counter >= PREARM_DISPLAY_PERIOD) {
display_fail = true;
pre_arm_display_counter = 0;
}
pre_arm_checks(display_fail);
}
bool AP_Arming_Blimp::pre_arm_checks(bool display_failure)
{
const bool passed = run_pre_arm_checks(display_failure);
set_pre_arm_check(passed);
return passed;
}
// perform pre-arm checks
// return true if the checks pass successfully
bool AP_Arming_Blimp::run_pre_arm_checks(bool display_failure)
{
// exit immediately if already armed
if (blimp.motors->armed()) {
return true;
}
// check if motor interlock and Emergency Stop aux switches are used
// at the same time. This cannot be allowed.
if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_INTERLOCK) &&
rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP)) {
check_failed(display_failure, "Interlock/E-Stop Conflict");
return false;
}
// check if motor interlock aux switch is in use
// if it is, switch needs to be in disabled position to arm
// otherwise exit immediately. This check to be repeated,
// as state can change at any time.
if (blimp.ap.using_interlock && blimp.ap.motor_interlock_switch) {
check_failed(display_failure, "Motor Interlock Enabled");
}
// if pre arm checks are disabled run only the mandatory checks
if (checks_to_perform == 0) {
return mandatory_checks(display_failure);
}
return fence_checks(display_failure)
& parameter_checks(display_failure)
& motor_checks(display_failure)
& pilot_throttle_checks(display_failure)
& gcs_failsafe_check(display_failure)
& alt_checks(display_failure)
& AP_Arming::pre_arm_checks(display_failure);
}
bool AP_Arming_Blimp::barometer_checks(bool display_failure)
{
if (!AP_Arming::barometer_checks(display_failure)) {
return false;
}
bool ret = true;
// check Baro
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_BARO)) {
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode.
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height
// that may differ from the baro height due to baro drift.
nav_filter_status filt_status = blimp.inertial_nav.get_filter_status();
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs);
if (using_baro_ref) {
if (fabsf(blimp.inertial_nav.get_altitude() - blimp.baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
check_failed(ARMING_CHECK_BARO, display_failure, "Altitude disparity");
ret = false;
}
}
}
return ret;
}
bool AP_Arming_Blimp::compass_checks(bool display_failure)
{
bool ret = AP_Arming::compass_checks(display_failure);
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_COMPASS)) {
// check compass offsets have been set. AP_Arming only checks
// this if learning is off; Blimp *always* checks.
char failure_msg[50] = {};
if (!AP::compass().configured(failure_msg, ARRAY_SIZE(failure_msg))) {
check_failed(ARMING_CHECK_COMPASS, display_failure, "%s", failure_msg);
ret = false;
}
}
return ret;
}
bool AP_Arming_Blimp::ins_checks(bool display_failure)
{
bool ret = AP_Arming::ins_checks(display_failure);
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_INS)) {
// get ekf attitude (if bad, it's usually the gyro biases)
if (!pre_arm_ekf_attitude_check()) {
check_failed(ARMING_CHECK_INS, display_failure, "EKF attitude is bad");
ret = false;
}
}
return ret;
}
bool AP_Arming_Blimp::board_voltage_checks(bool display_failure)
{
if (!AP_Arming::board_voltage_checks(display_failure)) {
return false;
}
// check battery voltage
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_VOLTAGE)) {
if (blimp.battery.has_failsafed()) {
check_failed(ARMING_CHECK_VOLTAGE, display_failure, "Battery failsafe");
return false;
}
// call parent battery checks
if (!AP_Arming::battery_checks(display_failure)) {
return false;
}
}
return true;
}
bool AP_Arming_Blimp::parameter_checks(bool display_failure)
{
// check various parameter values
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS)) {
// failsafe parameter checks
if (blimp.g.failsafe_throttle) {
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900
if (blimp.channel_down->get_radio_min() <= blimp.g.failsafe_throttle_value+10 || blimp.g.failsafe_throttle_value < 910) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check FS_THR_VALUE");
return false;
}
}
if (blimp.g.failsafe_gcs == FS_GCS_ENABLED_CONTINUE_MISSION) {
// FS_GCS_ENABLE == 2 has been removed
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "FS_GCS_ENABLE=2 removed, see FS_OPTIONS");
}
// lean angle parameter check
if (blimp.aparm.angle_max < 1000 || blimp.aparm.angle_max > 8000) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check ANGLE_MAX");
return false;
}
// pilot-speed-up parameter check
if (blimp.g.pilot_speed_up <= 0) {
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check PILOT_SPEED_UP");
return false;
}
}
return true;
}
// check motor setup was successful
bool AP_Arming_Blimp::motor_checks(bool display_failure)
{
// check motors initialised correctly
if (!blimp.motors->initialised_ok()) {
check_failed(display_failure, "Check firmware or FRAME_CLASS");
return false;
}
// further checks enabled with parameters
if (!check_enabled(ARMING_CHECK_PARAMETERS)) {
return true;
}
return true;
}
bool AP_Arming_Blimp::pilot_throttle_checks(bool display_failure)
{
// check throttle is above failsafe throttle
// this is near the bottom to allow other failures to be displayed before checking pilot throttle
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_RC)) {
if (blimp.g.failsafe_throttle != FS_THR_DISABLED && blimp.channel_down->get_radio_in() < blimp.g.failsafe_throttle_value) {
const char *failmsg = "Throttle below Failsafe";
check_failed(ARMING_CHECK_RC, display_failure, "%s", failmsg);
return false;
}
}
return true;
}
bool AP_Arming_Blimp::rc_calibration_checks(bool display_failure)
{
return true;
}
// performs pre_arm gps related checks and returns true if passed
bool AP_Arming_Blimp::gps_checks(bool display_failure)
{
// run mandatory gps checks first
if (!mandatory_gps_checks(display_failure)) {
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// check if flight mode requires GPS
bool mode_requires_gps = blimp.flightmode->requires_GPS();
// return true if GPS is not required
if (!mode_requires_gps) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// return true immediately if gps check is disabled
if (!(checks_to_perform == ARMING_CHECK_ALL || checks_to_perform & ARMING_CHECK_GPS)) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// warn about hdop separately - to prevent user confusion with no gps lock
if (blimp.gps.get_hdop() > blimp.g.gps_hdop_good) {
check_failed(ARMING_CHECK_GPS, display_failure, "High GPS HDOP");
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// call parent gps checks
if (!AP_Arming::gps_checks(display_failure)) {
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
// if we got here all must be ok
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
// check ekf attitude is acceptable
bool AP_Arming_Blimp::pre_arm_ekf_attitude_check()
{
// get ekf filter status
nav_filter_status filt_status = blimp.inertial_nav.get_filter_status();
return filt_status.flags.attitude;
}
// performs mandatory gps checks. returns true if passed
bool AP_Arming_Blimp::mandatory_gps_checks(bool display_failure)
{
// always check if inertial nav has started and is ready
const AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf();
char failure_msg[50] = {};
if (!ahrs.pre_arm_check(false, failure_msg, sizeof(failure_msg))) {
check_failed(display_failure, "AHRS: %s", failure_msg);
return false;
}
// check if flight mode requires GPS
bool mode_requires_gps = blimp.flightmode->requires_GPS();
if (mode_requires_gps) {
if (!blimp.position_ok()) {
// vehicle level position estimate checks
check_failed(display_failure, "Need Position Estimate");
return false;
}
} else {
// return true if GPS is not required
return true;
}
// if we got here all must be ok
return true;
}
// Check GCS failsafe
bool AP_Arming_Blimp::gcs_failsafe_check(bool display_failure)
{
if (blimp.failsafe.gcs) {
check_failed(display_failure, "GCS failsafe on");
return false;
}
return true;
}
// performs altitude checks. returns true if passed
bool AP_Arming_Blimp::alt_checks(bool display_failure)
{
// always EKF altitude estimate
if (!blimp.flightmode->has_manual_throttle() && !blimp.ekf_alt_ok()) {
check_failed(display_failure, "Need Alt Estimate");
return false;
}
return true;
}
// arm_checks - perform final checks before arming
// always called just before arming. Return true if ok to arm
// has side-effect that logging is started
bool AP_Arming_Blimp::arm_checks(AP_Arming::Method method)
{
return AP_Arming::arm_checks(method);
}
// mandatory checks that will be run if ARMING_CHECK is zero or arming forced
bool AP_Arming_Blimp::mandatory_checks(bool display_failure)
{
// call mandatory gps checks and update notify status because regular gps checks will not run
bool result = mandatory_gps_checks(display_failure);
AP_Notify::flags.pre_arm_gps_check = result;
// call mandatory alt check
if (!alt_checks(display_failure)) {
result = false;
}
return result;
}
void AP_Arming_Blimp::set_pre_arm_check(bool b)
{
blimp.ap.pre_arm_check = b;
AP_Notify::flags.pre_arm_check = b;
}
bool AP_Arming_Blimp::arm(const AP_Arming::Method method, const bool do_arming_checks)
{
static bool in_arm_motors = false;
// exit immediately if already in this function
if (in_arm_motors) {
return false;
}
in_arm_motors = true;
// return true if already armed
if (blimp.motors->armed()) {
in_arm_motors = false;
return true;
}
if (!AP_Arming::arm(method, do_arming_checks)) {
AP_Notify::events.arming_failed = true;
in_arm_motors = false;
return false;
}
// let logger know that we're armed (it may open logs e.g.)
AP::logger().set_vehicle_armed(true);
// notify that arming will occur (we do this early to give plenty of warning)
AP_Notify::flags.armed = true;
// call notify update a few times to ensure the message gets out
for (uint8_t i=0; i<=10; i++) {
AP::notify().update();
}
gcs().send_text(MAV_SEVERITY_INFO, "Arming motors"); //MIR kept in - usually only in SITL
AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf();
blimp.initial_armed_bearing = ahrs.yaw_sensor;
if (!ahrs.home_is_set()) {
// Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home)
ahrs.resetHeightDatum();
AP::logger().Write_Event(LogEvent::EKF_ALT_RESET);
// we have reset height, so arming height is zero
blimp.arming_altitude_m = 0;
} else if (!ahrs.home_is_locked()) {
// Reset home position if it has already been set before (but not locked)
if (!blimp.set_home_to_current_location(false)) {
// ignore failure
}
// remember the height when we armed
blimp.arming_altitude_m = blimp.inertial_nav.get_altitude() * 0.01;
}
// enable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(true);
hal.util->set_soft_armed(true);
// finally actually arm the motors
blimp.motors->armed(true);
// log flight mode in case it was changed while vehicle was disarmed
AP::logger().Write_Mode((uint8_t)blimp.control_mode, blimp.control_mode_reason);
// perf monitor ignores delay due to arming
AP::scheduler().perf_info.ignore_this_loop();
// flag exiting this function
in_arm_motors = false;
// Log time stamp of arming event
blimp.arm_time_ms = millis();
// Start the arming delay
blimp.ap.in_arming_delay = true;
// return success
return true;
}
// arming.disarm - disarm motors
bool AP_Arming_Blimp::disarm(const AP_Arming::Method method, bool do_disarm_checks)
{
// return immediately if we are already disarmed
if (!blimp.motors->armed()) {
return true;
}
if (!AP_Arming::disarm(method, do_disarm_checks)) {
return false;
}
gcs().send_text(MAV_SEVERITY_INFO, "Disarming motors"); //MIR keeping in - usually only in SITL
AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf();
// save compass offsets learned by the EKF if enabled
Compass &compass = AP::compass();
if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) {
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
Vector3f magOffsets;
if (ahrs.getMagOffsets(i, magOffsets)) {
compass.set_and_save_offsets(i, magOffsets);
}
}
}
// send disarm command to motors
blimp.motors->armed(false);
AP::logger().set_vehicle_armed(false);
// disable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(false);
hal.util->set_soft_armed(false);
blimp.ap.in_arming_delay = false;
return true;
}