ardupilot/libraries/SITL/examples/JSON/C++/simpleRover.cpp
TunaLobster c20914c0c6 SITL: Add C++ library for JSON interface
Includes examples for a 1-D rover, minimum, and a copy of Socket as SocketExample.
2021-08-31 14:28:03 +10:00

136 lines
4.4 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
// This is a very simple 1-D rover model using libAP_JSON for C++
#include <math.h>
#include <time.h>
#include <chrono>
#include <stdlib.h>
#include "libAP_JSON.cpp"
#include "simpleRover.h"
uint16_t servo_out[16];
uint64_t micros() {
uint64_t us = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::high_resolution_clock::
now().time_since_epoch()).count();
return us;
}
bool simpleRover::update(simpleRover &rover, uint16_t servo_out[]) {
// returns true is the update went well. false means something went wrong and the physics model should exit
// this is main portion of the physics
// ideal vehicle model
/* servos are defined as
1. throttle (really just velocity control)
2. steering (really just turn rate omega)
*/
double timestep = rover.state.timestamp - rover.old_state.timestamp;
if (timestep < 0) {
// the sim is trying to go backwards in time
std::cout << "[simpleRover] Error: Time went backwards" << std::endl;
return false;
} else if (timestep == 0) {
// time did not advance. no physics step
std::cout << "[simpleRover] Warning: Time did not step forward" << std::endl;
return true;
} else if (timestep > 60) {
// limiting timestep to less than 1 minute
std::cout << "[simpleRover] Warning: Time step was very large" << std::endl;
return true;
}
// how fast is the rover moving
double max_velocity = 1; // m/s
double body_v = _interp1D(servo_out[0], 1100, 1900, 0, max_velocity);
// how fast is the rover turning
// Just doing 1-D right now. This Needs a bit of system dynamics math and geometry to get to 2-D.
// double max_turn_rate = 5 * M_PI / 180;
// double body_omega_z = _interp1D(servo_out[1], 1100, 1900, -max_turn_rate, max_turn_rate);
// update the state
rover.state.V_x = body_v;
rover.state.accel_x = (rover.state.V_x - rover.old_state.V_x) / timestep; // derivative for accel
double delta_pos_x = (rover.state.V_x) * timestep; // integrate for position change
rover.state.pos_x = delta_pos_x + rover.old_state.pos_x; // plus c
// update successful
return true;
}
int main() {
// init the ArduPilot connection
libAP_JSON ap;
if (ap.InitSockets("127.0.0.1", 9002))
{
std::cout << "started socket" << std::endl;
}
// init a simpleRover
simpleRover rover;
// send and receive data from AP
while (true)
{
rover.state.timestamp = (double) micros() / 1000000.0;
if (ap.ReceiveServoPacket(servo_out))
{
#if DEBUG_ENABLED
std::cout << "servo_out PWM: [";
for (int i = 0; i < MAX_SERVO_CHANNELS - 1; ++i)
{
std::cout << servo_out[i] << ", ";
}
std::cout << servo_out[MAX_SERVO_CHANNELS - 1] << "]" << std::endl;
#endif
}
if (!ap.ap_online) {
continue;
}
// calc rover physics
if (!rover.update(rover, servo_out)) {
// something went wrong with the physics
std::cout << "[simpleRover] Error: Physics update has caused an exit" << std::endl;
return 1;
};
// step the sim forward
rover.old_state = rover.state;
// send with the required state
ap.SendState(rover.state.timestamp,
0, 0, 0, // gyro
rover.state.accel_x, 0, -9.81, // accel
rover.state.pos_x, 0, 0, // position
0, 0, 0, // attitude
rover.state.V_x, 0, 0); // velocity
}
return 0;
}
double simpleRover::_interp1D(const double &x, const double &x0, const double &x1, const double &y0, const double &y1)
{
return ((y0 * (x1 - x)) + (y1 * (x - x0))) / (x1 - x0);
}