5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-16 13:48:29 -04:00
ardupilot/ArduCopter/mode_throw.cpp
2020-02-05 10:51:28 +11:00

283 lines
11 KiB
C++

#include "Copter.h"
#if MODE_THROW_ENABLED == ENABLED
// throw_init - initialise throw controller
bool ModeThrow::init(bool ignore_checks)
{
#if FRAME_CONFIG == HELI_FRAME
// do not allow helis to use throw to start
return false;
#endif
// do not enter the mode when already armed or when flying
if (motors->armed()) {
return false;
}
// init state
stage = Throw_Disarmed;
nextmode_attempted = false;
return true;
}
// runs the throw to start controller
// should be called at 100hz or more
void ModeThrow::run()
{
/* Throw State Machine
Throw_Disarmed - motors are off
Throw_Detecting - motors are on and we are waiting for the throw
Throw_Uprighting - the throw has been detected and the copter is being uprighted
Throw_HgtStabilise - the copter is kept level and height is stabilised about the target height
Throw_PosHold - the copter is kept at a constant position and height
*/
if (!motors->armed()) {
// state machine entry is always from a disarmed state
stage = Throw_Disarmed;
} else if (stage == Throw_Disarmed && motors->armed()) {
gcs().send_text(MAV_SEVERITY_INFO,"waiting for throw");
stage = Throw_Detecting;
} else if (stage == Throw_Detecting && throw_detected()){
gcs().send_text(MAV_SEVERITY_INFO,"throw detected - uprighting");
stage = Throw_Uprighting;
// Cancel the waiting for throw tone sequence
AP_Notify::flags.waiting_for_throw = false;
} else if (stage == Throw_Uprighting && throw_attitude_good()) {
gcs().send_text(MAV_SEVERITY_INFO,"uprighted - controlling height");
stage = Throw_HgtStabilise;
// initialize vertical speed and acceleration limits
// use brake mode values for rapid response
pos_control->set_max_speed_z(BRAKE_MODE_SPEED_Z, BRAKE_MODE_SPEED_Z);
pos_control->set_max_accel_z(BRAKE_MODE_DECEL_RATE);
// initialise the demanded height to 3m above the throw height
// we want to rapidly clear surrounding obstacles
if (g2.throw_type == ThrowType_Drop) {
pos_control->set_alt_target(inertial_nav.get_altitude() - 100);
} else {
pos_control->set_alt_target(inertial_nav.get_altitude() + 300);
}
// set the initial velocity of the height controller demand to the measured velocity if it is going up
// if it is going down, set it to zero to enforce a very hard stop
pos_control->set_desired_velocity_z(fmaxf(inertial_nav.get_velocity_z(),0.0f));
// Set the auto_arm status to true to avoid a possible automatic disarm caused by selection of an auto mode with throttle at minimum
copter.set_auto_armed(true);
} else if (stage == Throw_HgtStabilise && throw_height_good()) {
gcs().send_text(MAV_SEVERITY_INFO,"height achieved - controlling position");
stage = Throw_PosHold;
// initialise the loiter target to the current position and velocity
loiter_nav->clear_pilot_desired_acceleration();
loiter_nav->init_target();
// Set the auto_arm status to true to avoid a possible automatic disarm caused by selection of an auto mode with throttle at minimum
copter.set_auto_armed(true);
} else if (stage == Throw_PosHold && throw_position_good()) {
if (!nextmode_attempted) {
switch ((Mode::Number)g2.throw_nextmode.get()) {
case Mode::Number::AUTO:
case Mode::Number::GUIDED:
case Mode::Number::RTL:
case Mode::Number::LAND:
case Mode::Number::BRAKE:
case Mode::Number::LOITER:
set_mode((Mode::Number)g2.throw_nextmode.get(), ModeReason::THROW_COMPLETE);
break;
default:
// do nothing
break;
}
nextmode_attempted = true;
}
}
// Throw State Processing
switch (stage) {
case Throw_Disarmed:
// prevent motors from rotating before the throw is detected unless enabled by the user
if (g.throw_motor_start == 1) {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
} else {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
}
// demand zero throttle (motors will be stopped anyway) and continually reset the attitude controller
attitude_control->set_yaw_target_to_current_heading();
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_throttle_out(0,true,g.throttle_filt);
break;
case Throw_Detecting:
// prevent motors from rotating before the throw is detected unless enabled by the user
if (g.throw_motor_start == 1) {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
} else {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
}
// Hold throttle at zero during the throw and continually reset the attitude controller
attitude_control->set_yaw_target_to_current_heading();
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_throttle_out(0,true,g.throttle_filt);
// Play the waiting for throw tone sequence to alert the user
AP_Notify::flags.waiting_for_throw = true;
break;
case Throw_Uprighting:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// demand a level roll/pitch attitude with zero yaw rate
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
// output 50% throttle and turn off angle boost to maximise righting moment
attitude_control->set_throttle_out(0.5f, false, g.throttle_filt);
break;
case Throw_HgtStabilise:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
// call height controller
pos_control->set_alt_target_from_climb_rate_ff(0.0f, G_Dt, false);
pos_control->update_z_controller();
break;
case Throw_PosHold:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run loiter controller
loiter_nav->update();
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), 0.0f);
// call height controller
pos_control->set_alt_target_from_climb_rate_ff(0.0f, G_Dt, false);
pos_control->update_z_controller();
break;
}
// log at 10hz or if stage changes
uint32_t now = AP_HAL::millis();
if ((stage != prev_stage) || (now - last_log_ms) > 100) {
prev_stage = stage;
last_log_ms = now;
const float velocity = inertial_nav.get_velocity().length();
const float velocity_z = inertial_nav.get_velocity().z;
const float accel = copter.ins.get_accel().length();
const float ef_accel_z = ahrs.get_accel_ef().z;
const bool throw_detect = (stage > Throw_Detecting) || throw_detected();
const bool attitude_ok = (stage > Throw_Uprighting) || throw_attitude_good();
const bool height_ok = (stage > Throw_HgtStabilise) || throw_height_good();
const bool pos_ok = (stage > Throw_PosHold) || throw_position_good();
AP::logger().Write(
"THRO",
"TimeUS,Stage,Vel,VelZ,Acc,AccEfZ,Throw,AttOk,HgtOk,PosOk",
"s-nnoo----",
"F-0000----",
"QBffffbbbb",
AP_HAL::micros64(),
(uint8_t)stage,
(double)velocity,
(double)velocity_z,
(double)accel,
(double)ef_accel_z,
throw_detect,
attitude_ok,
height_ok,
pos_ok);
}
}
bool ModeThrow::throw_detected()
{
// Check that we have a valid navigation solution
nav_filter_status filt_status = inertial_nav.get_filter_status();
if (!filt_status.flags.attitude || !filt_status.flags.horiz_pos_abs || !filt_status.flags.vert_pos) {
return false;
}
// Check for high speed (>500 cm/s)
bool high_speed = inertial_nav.get_velocity().length() > THROW_HIGH_SPEED;
// check for upwards or downwards trajectory (airdrop) of 50cm/s
bool changing_height;
if (g2.throw_type == ThrowType_Drop) {
changing_height = inertial_nav.get_velocity().z < -THROW_VERTICAL_SPEED;
} else {
changing_height = inertial_nav.get_velocity().z > THROW_VERTICAL_SPEED;
}
// Check the vertical acceleraton is greater than 0.25g
bool free_falling = ahrs.get_accel_ef().z > -0.25 * GRAVITY_MSS;
// Check if the accel length is < 1.0g indicating that any throw action is complete and the copter has been released
bool no_throw_action = copter.ins.get_accel().length() < 1.0f * GRAVITY_MSS;
// High velocity or free-fall combined with increasing height indicate a possible air-drop or throw release
bool possible_throw_detected = (free_falling || high_speed) && changing_height && no_throw_action;
// Record time and vertical velocity when we detect the possible throw
if (possible_throw_detected && ((AP_HAL::millis() - free_fall_start_ms) > 500)) {
free_fall_start_ms = AP_HAL::millis();
free_fall_start_velz = inertial_nav.get_velocity().z;
}
// Once a possible throw condition has been detected, we check for 2.5 m/s of downwards velocity change in less than 0.5 seconds to confirm
bool throw_condition_confirmed = ((AP_HAL::millis() - free_fall_start_ms < 500) && ((inertial_nav.get_velocity().z - free_fall_start_velz) < -250.0f));
// start motors and enter the control mode if we are in continuous freefall
if (throw_condition_confirmed) {
return true;
} else {
return false;
}
}
bool ModeThrow::throw_attitude_good()
{
// Check that we have uprighted the copter
const Matrix3f &rotMat = ahrs.get_rotation_body_to_ned();
return (rotMat.c.z > 0.866f); // is_upright
}
bool ModeThrow::throw_height_good()
{
// Check that we are within 0.5m of the demanded height
return (pos_control->get_alt_error() < 50.0f);
}
bool ModeThrow::throw_position_good()
{
// check that our horizontal position error is within 50cm
return (pos_control->get_horizontal_error() < 50.0f);
}
#endif