mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 17:48:35 -04:00
1009 lines
32 KiB
C++
1009 lines
32 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
parent class for aircraft simulators
|
|
*/
|
|
|
|
#include "SIM_Aircraft.h"
|
|
|
|
#include <stdio.h>
|
|
#include <sys/time.h>
|
|
#include <unistd.h>
|
|
|
|
|
|
#if defined(__CYGWIN__) || defined(__CYGWIN64__)
|
|
#include <windows.h>
|
|
#include <time.h>
|
|
#include <mmsystem.h>
|
|
#endif
|
|
|
|
#include <GCS_MAVLink/GCS.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include <AP_Param/AP_Param.h>
|
|
#include <AP_Declination/AP_Declination.h>
|
|
|
|
using namespace SITL;
|
|
|
|
/*
|
|
parent class for all simulator types
|
|
*/
|
|
|
|
Aircraft::Aircraft(const char *frame_str) :
|
|
frame(frame_str)
|
|
{
|
|
// make the SIM_* variables available to simulator backends
|
|
sitl = AP::sitl();
|
|
|
|
set_speedup(1.0f);
|
|
|
|
last_wall_time_us = get_wall_time_us();
|
|
|
|
// allow for orientation settings, such as with tailsitters
|
|
enum ap_var_type ptype;
|
|
ahrs_orientation = (AP_Int8 *)AP_Param::find("AHRS_ORIENTATION", &ptype);
|
|
|
|
// ahrs_orientation->get() returns ROTATION_NONE here, regardless of the actual value
|
|
enum Rotation imu_rotation = ahrs_orientation?(enum Rotation)ahrs_orientation->get():ROTATION_NONE;
|
|
last_imu_rotation = imu_rotation;
|
|
// sitl is null if running example program
|
|
if (sitl) {
|
|
sitl->ahrs_rotation.from_rotation(imu_rotation);
|
|
sitl->ahrs_rotation_inv = sitl->ahrs_rotation.transposed();
|
|
}
|
|
|
|
terrain = AP::terrain();
|
|
|
|
// init rangefinder array to -1 to signify no data
|
|
for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++){
|
|
rangefinder_m[i] = -1.0f;
|
|
}
|
|
}
|
|
|
|
void Aircraft::set_start_location(const Location &start_loc, const float start_yaw)
|
|
{
|
|
home = start_loc;
|
|
home_yaw = start_yaw;
|
|
home_is_set = true;
|
|
|
|
::printf("Home: %f %f alt=%fm hdg=%f\n",
|
|
home.lat*1e-7,
|
|
home.lng*1e-7,
|
|
home.alt*0.01,
|
|
home_yaw);
|
|
|
|
location = home;
|
|
ground_level = home.alt * 0.01f;
|
|
|
|
dcm.from_euler(0.0f, 0.0f, radians(home_yaw));
|
|
}
|
|
|
|
/*
|
|
return difference in altitude between home position and current loc
|
|
*/
|
|
float Aircraft::ground_height_difference() const
|
|
{
|
|
float h1, h2;
|
|
if (sitl &&
|
|
sitl->terrain_enable && terrain &&
|
|
terrain->height_amsl(home, h1, false) &&
|
|
terrain->height_amsl(location, h2, false)) {
|
|
h2 += local_ground_level;
|
|
return h2 - h1;
|
|
}
|
|
return local_ground_level;
|
|
}
|
|
|
|
void Aircraft::set_precland(SIM_Precland *_precland) {
|
|
precland = _precland;
|
|
precland->set_default_location(home.lat * 1.0e-7f, home.lng * 1.0e-7f, static_cast<int16_t>(get_home_yaw()));
|
|
}
|
|
|
|
/*
|
|
return current height above ground level (metres)
|
|
*/
|
|
float Aircraft::hagl() const
|
|
{
|
|
return (-position.z) + home.alt * 0.01f - ground_level - frame_height - ground_height_difference();
|
|
}
|
|
|
|
/*
|
|
return true if we are on the ground
|
|
*/
|
|
bool Aircraft::on_ground() const
|
|
{
|
|
return hagl() <= 0.001f; // prevent bouncing around ground
|
|
}
|
|
|
|
/*
|
|
update location from position
|
|
*/
|
|
void Aircraft::update_position(void)
|
|
{
|
|
location = home;
|
|
location.offset(position.x, position.y);
|
|
|
|
location.alt = static_cast<int32_t>(home.alt - position.z * 100.0f);
|
|
|
|
#if 0
|
|
// logging of raw sitl data
|
|
Vector3f accel_ef = dcm * accel_body;
|
|
// @LoggerMessage: SITL
|
|
// @Description: Simulation data
|
|
// @Field: TimeUS: Time since system startup
|
|
// @Field: VN: Velocity - North component
|
|
// @Field: VE: Velocity - East component
|
|
// @Field: VD: Velocity - Down component
|
|
// @Field: AN: Acceleration - North component
|
|
// @Field: AE: Acceleration - East component
|
|
// @Field: AD: Acceleration - Down component
|
|
// @Field: PN: Position - North component
|
|
// @Field: PE: Position - East component
|
|
// @Field: PD: Position - Down component
|
|
AP::logger().Write("SITL", "TimeUS,VN,VE,VD,AN,AE,AD,PN,PE,PD", "Qfffffffff",
|
|
AP_HAL::micros64(),
|
|
velocity_ef.x, velocity_ef.y, velocity_ef.z,
|
|
accel_ef.x, accel_ef.y, accel_ef.z,
|
|
position.x, position.y, position.z);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
update body magnetic field from position and rotation
|
|
*/
|
|
void Aircraft::update_mag_field_bf()
|
|
{
|
|
// get the magnetic field intensity and orientation
|
|
float intensity;
|
|
float declination;
|
|
float inclination;
|
|
AP_Declination::get_mag_field_ef(location.lat * 1e-7f, location.lng * 1e-7f, intensity, declination, inclination);
|
|
|
|
// create a field vector and rotate to the required orientation
|
|
Vector3f mag_ef(1e3f * intensity, 0.0f, 0.0f);
|
|
Matrix3f R;
|
|
R.from_euler(0.0f, -ToRad(inclination), ToRad(declination));
|
|
mag_ef = R * mag_ef;
|
|
|
|
// calculate frame height above ground
|
|
const float frame_height_agl = fmaxf((-position.z) + home.alt * 0.01f - ground_level, 0.0f);
|
|
|
|
if (!sitl) {
|
|
// running example program
|
|
return;
|
|
}
|
|
|
|
// calculate scaling factor that varies from 1 at ground level to 1/8 at sitl->mag_anomaly_hgt
|
|
// Assume magnetic anomaly strength scales with 1/R**3
|
|
float anomaly_scaler = (sitl->mag_anomaly_hgt / (frame_height_agl + sitl->mag_anomaly_hgt));
|
|
anomaly_scaler = anomaly_scaler * anomaly_scaler * anomaly_scaler;
|
|
|
|
// add scaled anomaly to earth field
|
|
mag_ef += sitl->mag_anomaly_ned.get() * anomaly_scaler;
|
|
|
|
// Rotate into body frame
|
|
mag_bf = dcm.transposed() * mag_ef;
|
|
|
|
// add motor interference
|
|
mag_bf += sitl->mag_mot.get() * battery_current;
|
|
}
|
|
|
|
/* advance time by deltat in seconds */
|
|
void Aircraft::time_advance()
|
|
{
|
|
// we only advance time if it hasn't been advanced already by the
|
|
// backend
|
|
if (last_time_us == time_now_us) {
|
|
time_now_us += frame_time_us;
|
|
}
|
|
last_time_us = time_now_us;
|
|
if (use_time_sync) {
|
|
sync_frame_time();
|
|
}
|
|
}
|
|
|
|
/* setup the frame step time */
|
|
void Aircraft::setup_frame_time(float new_rate, float new_speedup)
|
|
{
|
|
rate_hz = new_rate;
|
|
target_speedup = new_speedup;
|
|
frame_time_us = uint64_t(1.0e6f/rate_hz);
|
|
|
|
last_wall_time_us = get_wall_time_us();
|
|
}
|
|
|
|
/* adjust frame_time calculation */
|
|
void Aircraft::adjust_frame_time(float new_rate)
|
|
{
|
|
frame_time_us = uint64_t(1.0e6f/new_rate);
|
|
rate_hz = new_rate;
|
|
}
|
|
|
|
/*
|
|
try to synchronise simulation time with wall clock time, taking
|
|
into account desired speedup
|
|
This tries to take account of possible granularity of
|
|
get_wall_time_us() so it works reasonably well on windows
|
|
*/
|
|
void Aircraft::sync_frame_time(void)
|
|
{
|
|
frame_counter++;
|
|
uint64_t now = get_wall_time_us();
|
|
uint64_t dt_us = now - last_wall_time_us;
|
|
|
|
const float target_dt_us = 1.0e6/(rate_hz*target_speedup);
|
|
|
|
// accumulate sleep debt if we're running too fast
|
|
sleep_debt_us += target_dt_us - dt_us;
|
|
|
|
if (sleep_debt_us < -1.0e5) {
|
|
// don't let a large negative debt build up
|
|
sleep_debt_us = -1.0e5;
|
|
}
|
|
if (sleep_debt_us > min_sleep_time) {
|
|
// sleep if we have built up a debt of min_sleep_tim
|
|
usleep(sleep_debt_us);
|
|
sleep_debt_us -= (get_wall_time_us() - now);
|
|
}
|
|
last_wall_time_us = get_wall_time_us();
|
|
|
|
uint32_t now_ms = last_wall_time_us / 1000ULL;
|
|
float dt_wall = (now_ms - last_fps_report_ms) * 0.001;
|
|
if (dt_wall > 2.0) {
|
|
#if 0
|
|
const float achieved_rate_hz = (frame_counter - last_frame_count) / dt_wall;
|
|
::printf("Rate: target:%.1f achieved:%.1f speedup %.1f/%.1f\n",
|
|
rate_hz*target_speedup, achieved_rate_hz,
|
|
achieved_rate_hz/rate_hz, target_speedup);
|
|
#endif
|
|
last_frame_count = frame_counter;
|
|
last_fps_report_ms = now_ms;
|
|
}
|
|
}
|
|
|
|
/* add noise based on throttle level (from 0..1) */
|
|
void Aircraft::add_noise(float throttle)
|
|
{
|
|
gyro += Vector3f(rand_normal(0, 1),
|
|
rand_normal(0, 1),
|
|
rand_normal(0, 1)) * gyro_noise * fabsf(throttle);
|
|
accel_body += Vector3f(rand_normal(0, 1),
|
|
rand_normal(0, 1),
|
|
rand_normal(0, 1)) * accel_noise * fabsf(throttle);
|
|
}
|
|
|
|
/*
|
|
normal distribution random numbers
|
|
See
|
|
http://en.literateprograms.org/index.php?title=Special:DownloadCode/Box-Muller_transform_%28C%29&oldid=7011
|
|
*/
|
|
double Aircraft::rand_normal(double mean, double stddev)
|
|
{
|
|
static double n2 = 0.0;
|
|
static int n2_cached = 0;
|
|
if (!n2_cached) {
|
|
double x, y, r;
|
|
do
|
|
{
|
|
x = 2.0 * rand()/RAND_MAX - 1;
|
|
y = 2.0 * rand()/RAND_MAX - 1;
|
|
r = x*x + y*y;
|
|
} while (is_zero(r) || r > 1.0);
|
|
const double d = sqrt(-2.0 * log(r)/r);
|
|
const double n1 = x * d;
|
|
n2 = y * d;
|
|
const double result = n1 * stddev + mean;
|
|
n2_cached = 1;
|
|
return result;
|
|
} else {
|
|
n2_cached = 0;
|
|
return n2 * stddev + mean;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
fill a sitl_fdm structure from the simulator state
|
|
*/
|
|
void Aircraft::fill_fdm(struct sitl_fdm &fdm)
|
|
{
|
|
bool is_smoothed = false;
|
|
if (use_smoothing) {
|
|
smooth_sensors();
|
|
is_smoothed = true;
|
|
}
|
|
fdm.timestamp_us = time_now_us;
|
|
if (fdm.home.lat == 0 && fdm.home.lng == 0) {
|
|
// initialise home
|
|
fdm.home = home;
|
|
}
|
|
fdm.latitude = location.lat * 1.0e-7;
|
|
fdm.longitude = location.lng * 1.0e-7;
|
|
fdm.altitude = location.alt * 1.0e-2;
|
|
fdm.heading = degrees(atan2f(velocity_ef.y, velocity_ef.x));
|
|
fdm.speedN = velocity_ef.x;
|
|
fdm.speedE = velocity_ef.y;
|
|
fdm.speedD = velocity_ef.z;
|
|
fdm.xAccel = accel_body.x;
|
|
fdm.yAccel = accel_body.y;
|
|
fdm.zAccel = accel_body.z;
|
|
fdm.rollRate = degrees(gyro.x);
|
|
fdm.pitchRate = degrees(gyro.y);
|
|
fdm.yawRate = degrees(gyro.z);
|
|
float r, p, y;
|
|
dcm.to_euler(&r, &p, &y);
|
|
fdm.rollDeg = degrees(r);
|
|
fdm.pitchDeg = degrees(p);
|
|
fdm.yawDeg = degrees(y);
|
|
fdm.quaternion.from_rotation_matrix(dcm);
|
|
fdm.airspeed = airspeed_pitot;
|
|
fdm.velocity_air_bf = velocity_air_bf;
|
|
fdm.battery_voltage = battery_voltage;
|
|
fdm.battery_current = battery_current;
|
|
fdm.num_motors = num_motors;
|
|
fdm.vtol_motor_start = vtol_motor_start;
|
|
memcpy(fdm.rpm, rpm, num_motors * sizeof(float));
|
|
fdm.rcin_chan_count = rcin_chan_count;
|
|
fdm.range = range;
|
|
memcpy(fdm.rcin, rcin, rcin_chan_count * sizeof(float));
|
|
fdm.bodyMagField = mag_bf;
|
|
|
|
// copy laser scanner results
|
|
fdm.scanner.points = scanner.points;
|
|
fdm.scanner.ranges = scanner.ranges;
|
|
|
|
// copy rangefinder
|
|
memcpy(fdm.rangefinder_m, rangefinder_m, sizeof(fdm.rangefinder_m));
|
|
|
|
fdm.wind_vane_apparent.direction = wind_vane_apparent.direction;
|
|
fdm.wind_vane_apparent.speed = wind_vane_apparent.speed;
|
|
|
|
if (is_smoothed) {
|
|
fdm.xAccel = smoothing.accel_body.x;
|
|
fdm.yAccel = smoothing.accel_body.y;
|
|
fdm.zAccel = smoothing.accel_body.z;
|
|
fdm.rollRate = degrees(smoothing.gyro.x);
|
|
fdm.pitchRate = degrees(smoothing.gyro.y);
|
|
fdm.yawRate = degrees(smoothing.gyro.z);
|
|
fdm.speedN = smoothing.velocity_ef.x;
|
|
fdm.speedE = smoothing.velocity_ef.y;
|
|
fdm.speedD = smoothing.velocity_ef.z;
|
|
fdm.latitude = smoothing.location.lat * 1.0e-7;
|
|
fdm.longitude = smoothing.location.lng * 1.0e-7;
|
|
fdm.altitude = smoothing.location.alt * 1.0e-2;
|
|
}
|
|
|
|
if (ahrs_orientation != nullptr) {
|
|
enum Rotation imu_rotation = (enum Rotation)ahrs_orientation->get();
|
|
if (imu_rotation != last_imu_rotation) {
|
|
// Surprisingly, Matrix3<T>::from_rotation(ROTATION_CUSTOM) is the identity matrix
|
|
// so we must deal with that here
|
|
if (imu_rotation == ROTATION_CUSTOM) {
|
|
if ((custom_roll == nullptr) || (custom_pitch == nullptr) || (custom_yaw == nullptr)) {
|
|
enum ap_var_type ptype;
|
|
custom_roll = (AP_Float *)AP_Param::find("AHRS_CUSTOM_ROLL", &ptype);
|
|
custom_pitch = (AP_Float *)AP_Param::find("AHRS_CUSTOM_PIT", &ptype);
|
|
custom_yaw = (AP_Float *)AP_Param::find("AHRS_CUSTOM_YAW", &ptype);
|
|
}
|
|
if ((custom_roll != nullptr) && (custom_pitch != nullptr) && (custom_yaw != nullptr)) {
|
|
sitl->ahrs_rotation.from_euler(radians(*custom_roll), radians(*custom_pitch), radians(*custom_yaw));
|
|
sitl->ahrs_rotation_inv = sitl->ahrs_rotation.transposed();
|
|
} else {
|
|
AP_HAL::panic("could not find one or more of parameters AHRS_CUSTOM_ROLL/PITCH/YAW");
|
|
}
|
|
} else {
|
|
sitl->ahrs_rotation.from_rotation(imu_rotation);
|
|
sitl->ahrs_rotation_inv = sitl->ahrs_rotation.transposed();
|
|
last_imu_rotation = imu_rotation;
|
|
}
|
|
}
|
|
if (imu_rotation != ROTATION_NONE) {
|
|
Matrix3f m = dcm;
|
|
m = m * sitl->ahrs_rotation_inv;
|
|
|
|
m.to_euler(&r, &p, &y);
|
|
fdm.rollDeg = degrees(r);
|
|
fdm.pitchDeg = degrees(p);
|
|
fdm.yawDeg = degrees(y);
|
|
fdm.quaternion.from_rotation_matrix(m);
|
|
}
|
|
}
|
|
|
|
// in the first call here, if a speedup option is specified, overwrite it
|
|
if (is_equal(last_speedup, -1.0f) && !is_equal(get_speedup(), 1.0f)) {
|
|
sitl->speedup = get_speedup();
|
|
}
|
|
|
|
if (!is_equal(last_speedup, float(sitl->speedup)) && sitl->speedup > 0) {
|
|
set_speedup(sitl->speedup);
|
|
last_speedup = sitl->speedup;
|
|
}
|
|
}
|
|
|
|
float Aircraft::rangefinder_range() const
|
|
{
|
|
// swiped from sitl_rangefinder.cpp - we should unify them at some stage
|
|
|
|
float altitude = range; // only sub appears to set this
|
|
if (is_equal(altitude, -1.0f)) { // Use SITL altitude as reading by default
|
|
altitude = sitl->height_agl;
|
|
}
|
|
|
|
// sensor position offset in body frame
|
|
const Vector3f relPosSensorBF = sitl->rngfnd_pos_offset;
|
|
|
|
// adjust altitude for position of the sensor on the vehicle if position offset is non-zero
|
|
if (!relPosSensorBF.is_zero()) {
|
|
// get a rotation matrix following DCM conventions (body to earth)
|
|
Matrix3f rotmat;
|
|
sitl->state.quaternion.rotation_matrix(rotmat);
|
|
// rotate the offset into earth frame
|
|
const Vector3f relPosSensorEF = rotmat * relPosSensorBF;
|
|
// correct the altitude at the sensor
|
|
altitude -= relPosSensorEF.z;
|
|
}
|
|
|
|
// If the attidude is non reversed for SITL OR we are using rangefinder from external simulator,
|
|
// We adjust the reading with noise, glitch and scaler as the reading is on analog port.
|
|
if ((fabs(sitl->state.rollDeg) < 90.0 && fabs(sitl->state.pitchDeg) < 90.0) || !is_equal(range, -1.0f)) {
|
|
if (is_equal(range, -1.0f)) { // disable for external reading that already handle this
|
|
// adjust for apparent altitude with roll
|
|
altitude /= cosf(radians(sitl->state.rollDeg)) * cosf(radians(sitl->state.pitchDeg));
|
|
}
|
|
// Add some noise on reading
|
|
altitude += sitl->sonar_noise * rand_float();
|
|
}
|
|
|
|
return altitude;
|
|
}
|
|
|
|
|
|
uint64_t Aircraft::get_wall_time_us() const
|
|
{
|
|
#if defined(__CYGWIN__) || defined(__CYGWIN64__)
|
|
static DWORD tPrev;
|
|
static uint64_t last_ret_us;
|
|
if (tPrev == 0) {
|
|
tPrev = timeGetTime();
|
|
return 0;
|
|
}
|
|
DWORD now = timeGetTime();
|
|
last_ret_us += (uint64_t)((now - tPrev)*1000UL);
|
|
tPrev = now;
|
|
return last_ret_us;
|
|
#else
|
|
struct timespec ts;
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
return uint64_t(ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000ULL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
set simulation speedup
|
|
*/
|
|
void Aircraft::set_speedup(float speedup)
|
|
{
|
|
setup_frame_time(rate_hz, speedup);
|
|
}
|
|
|
|
void Aircraft::update_model(const struct sitl_input &input)
|
|
{
|
|
if (!home_is_set) {
|
|
if (sitl == nullptr) {
|
|
return;
|
|
}
|
|
Location loc;
|
|
loc.lat = sitl->opos.lat.get() * 1.0e7;
|
|
loc.lng = sitl->opos.lng.get() * 1.0e7;
|
|
loc.alt = sitl->opos.alt.get() * 1.0e2;
|
|
set_start_location(loc, sitl->opos.hdg.get());
|
|
}
|
|
local_ground_level = 0.0f;
|
|
update(input);
|
|
}
|
|
|
|
/*
|
|
update the simulation attitude and relative position
|
|
*/
|
|
void Aircraft::update_dynamics(const Vector3f &rot_accel)
|
|
{
|
|
const float delta_time = frame_time_us * 1.0e-6f;
|
|
|
|
// update rotational rates in body frame
|
|
gyro += rot_accel * delta_time;
|
|
|
|
gyro.x = constrain_float(gyro.x, -radians(2000.0f), radians(2000.0f));
|
|
gyro.y = constrain_float(gyro.y, -radians(2000.0f), radians(2000.0f));
|
|
gyro.z = constrain_float(gyro.z, -radians(2000.0f), radians(2000.0f));
|
|
|
|
// update attitude
|
|
dcm.rotate(gyro * delta_time);
|
|
dcm.normalize();
|
|
|
|
Vector3f accel_earth = dcm * accel_body;
|
|
accel_earth += Vector3f(0.0f, 0.0f, GRAVITY_MSS);
|
|
|
|
// if we're on the ground, then our vertical acceleration is limited
|
|
// to zero. This effectively adds the force of the ground on the aircraft
|
|
if (on_ground() && accel_earth.z > 0) {
|
|
accel_earth.z = 0;
|
|
}
|
|
|
|
// work out acceleration as seen by the accelerometers. It sees the kinematic
|
|
// acceleration (ie. real movement), plus gravity
|
|
accel_body = dcm.transposed() * (accel_earth + Vector3f(0.0f, 0.0f, -GRAVITY_MSS));
|
|
|
|
// new velocity vector
|
|
velocity_ef += accel_earth * delta_time;
|
|
|
|
const bool was_on_ground = on_ground();
|
|
// new position vector
|
|
position += velocity_ef * delta_time;
|
|
|
|
// velocity relative to air mass, in earth frame
|
|
velocity_air_ef = velocity_ef + wind_ef;
|
|
|
|
// velocity relative to airmass in body frame
|
|
velocity_air_bf = dcm.transposed() * velocity_air_ef;
|
|
|
|
// airspeed
|
|
airspeed = velocity_air_ef.length();
|
|
|
|
// airspeed as seen by a fwd pitot tube (limited to 120m/s)
|
|
airspeed_pitot = constrain_float(velocity_air_bf * Vector3f(1.0f, 0.0f, 0.0f), 0.0f, 120.0f);
|
|
|
|
// constrain height to the ground
|
|
if (on_ground()) {
|
|
if (!was_on_ground && AP_HAL::millis() - last_ground_contact_ms > 1000) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "SIM Hit ground at %f m/s", velocity_ef.z);
|
|
last_ground_contact_ms = AP_HAL::millis();
|
|
}
|
|
position.z = -(ground_level + frame_height - home.alt * 0.01f + ground_height_difference());
|
|
|
|
// get speed of ground movement (for ship takeoff/landing)
|
|
float yaw_rate = 0;
|
|
const Vector2f ship_movement = sitl->shipsim.get_ground_speed_adjustment(location, yaw_rate);
|
|
const Vector3f gnd_movement(ship_movement.x, ship_movement.y, 0);
|
|
|
|
switch (ground_behavior) {
|
|
case GROUND_BEHAVIOR_NONE:
|
|
break;
|
|
case GROUND_BEHAVIOR_NO_MOVEMENT: {
|
|
// zero roll/pitch, but keep yaw
|
|
float r, p, y;
|
|
dcm.to_euler(&r, &p, &y);
|
|
y = y + yaw_rate * delta_time;
|
|
dcm.from_euler(0.0f, 0.0f, y);
|
|
// X, Y movement tracks ground movement
|
|
velocity_ef.x = gnd_movement.x;
|
|
velocity_ef.y = gnd_movement.y;
|
|
if (velocity_ef.z > 0.0f) {
|
|
velocity_ef.z = 0.0f;
|
|
}
|
|
gyro.zero();
|
|
use_smoothing = true;
|
|
break;
|
|
}
|
|
case GROUND_BEHAVIOR_FWD_ONLY: {
|
|
// zero roll/pitch, but keep yaw
|
|
float r, p, y;
|
|
dcm.to_euler(&r, &p, &y);
|
|
if (velocity_ef.length() < 5) {
|
|
// at high speeds don't constrain pitch, otherwise we
|
|
// can get stuck in takeoff
|
|
p = 0;
|
|
} else {
|
|
p = MAX(p, 0);
|
|
}
|
|
y = y + yaw_rate * delta_time;
|
|
dcm.from_euler(0.0f, p, y);
|
|
// only fwd movement
|
|
Vector3f v_bf = dcm.transposed() * velocity_ef;
|
|
v_bf.y = 0.0f;
|
|
if (v_bf.x < 0.0f) {
|
|
v_bf.x = 0.0f;
|
|
}
|
|
|
|
Vector3f gnd_movement_bf = dcm.transposed() * gnd_movement;
|
|
|
|
// lateral speed equals ground movement
|
|
v_bf.y = gnd_movement_bf.y;
|
|
|
|
if (!gnd_movement_bf.is_zero()) {
|
|
// fwd speed slowly approaches ground movement to simulate wheel friction
|
|
const float tconst = 20; // seconds
|
|
const float alpha = delta_time/(delta_time+tconst/M_2PI);
|
|
v_bf.x += (gnd_movement.x - v_bf.x) * alpha;
|
|
}
|
|
|
|
velocity_ef = dcm * v_bf;
|
|
if (velocity_ef.z > 0.0f) {
|
|
velocity_ef.z = 0.0f;
|
|
}
|
|
gyro.zero();
|
|
gyro.z = yaw_rate;
|
|
use_smoothing = true;
|
|
break;
|
|
}
|
|
case GROUND_BEHAVIOR_TAILSITTER: {
|
|
// point straight up
|
|
float r, p, y;
|
|
dcm.to_euler(&r, &p, &y);
|
|
y = y + yaw_rate * delta_time;
|
|
dcm.from_euler(0.0f, radians(90), y);
|
|
// no movement
|
|
if (accel_earth.z > -1.1*GRAVITY_MSS) {
|
|
velocity_ef.zero();
|
|
}
|
|
// X, Y movement tracks ground movement
|
|
velocity_ef.x = gnd_movement.x;
|
|
velocity_ef.y = gnd_movement.y;
|
|
gyro.zero();
|
|
use_smoothing = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// allow for changes in physics step
|
|
adjust_frame_time(constrain_float(sitl->loop_rate_hz, rate_hz-1, rate_hz+1));
|
|
}
|
|
|
|
/*
|
|
update wind vector
|
|
*/
|
|
void Aircraft::update_wind(const struct sitl_input &input)
|
|
{
|
|
// wind vector in earth frame
|
|
wind_ef = Vector3f(cosf(radians(input.wind.direction))*cosf(radians(input.wind.dir_z)),
|
|
sinf(radians(input.wind.direction))*cosf(radians(input.wind.dir_z)),
|
|
sinf(radians(input.wind.dir_z))) * input.wind.speed;
|
|
|
|
wind_ef.z += get_local_updraft(position);
|
|
|
|
const float wind_turb = input.wind.turbulence * 10.0f; // scale input.wind.turbulence to match standard deviation when using iir_coef=0.98
|
|
const float iir_coef = 0.98f; // filtering high frequencies from turbulence
|
|
|
|
if (wind_turb > 0 && !on_ground()) {
|
|
|
|
turbulence_azimuth = turbulence_azimuth + (2 * rand());
|
|
|
|
turbulence_horizontal_speed =
|
|
static_cast<float>(turbulence_horizontal_speed * iir_coef+wind_turb * rand_normal(0, 1) * (1 - iir_coef));
|
|
|
|
turbulence_vertical_speed = static_cast<float>((turbulence_vertical_speed * iir_coef) + (wind_turb * rand_normal(0, 1) * (1 - iir_coef)));
|
|
|
|
wind_ef += Vector3f(
|
|
cosf(radians(turbulence_azimuth)) * turbulence_horizontal_speed,
|
|
sinf(radians(turbulence_azimuth)) * turbulence_horizontal_speed,
|
|
turbulence_vertical_speed);
|
|
}
|
|
}
|
|
|
|
/*
|
|
smooth sensors for kinematic consistancy when we interact with the ground
|
|
*/
|
|
void Aircraft::smooth_sensors(void)
|
|
{
|
|
uint64_t now = time_now_us;
|
|
Vector3f delta_pos = position - smoothing.position;
|
|
if (smoothing.last_update_us == 0 || delta_pos.length() > 10) {
|
|
smoothing.position = position;
|
|
smoothing.rotation_b2e = dcm;
|
|
smoothing.accel_body = accel_body;
|
|
smoothing.velocity_ef = velocity_ef;
|
|
smoothing.gyro = gyro;
|
|
smoothing.last_update_us = now;
|
|
smoothing.location = location;
|
|
printf("Smoothing reset at %.3f\n", now * 1.0e-6f);
|
|
return;
|
|
}
|
|
const float delta_time = (now - smoothing.last_update_us) * 1.0e-6f;
|
|
if (delta_time < 0 || delta_time > 0.1) {
|
|
return;
|
|
}
|
|
|
|
// calculate required accel to get us to desired position and velocity in the time_constant
|
|
const float time_constant = 0.1f;
|
|
Vector3f dvel = (velocity_ef - smoothing.velocity_ef) + (delta_pos / time_constant);
|
|
Vector3f accel_e = dvel / time_constant + (dcm * accel_body + Vector3f(0.0f, 0.0f, GRAVITY_MSS));
|
|
const float accel_limit = 14 * GRAVITY_MSS;
|
|
accel_e.x = constrain_float(accel_e.x, -accel_limit, accel_limit);
|
|
accel_e.y = constrain_float(accel_e.y, -accel_limit, accel_limit);
|
|
accel_e.z = constrain_float(accel_e.z, -accel_limit, accel_limit);
|
|
smoothing.accel_body = smoothing.rotation_b2e.transposed() * (accel_e + Vector3f(0.0f, 0.0f, -GRAVITY_MSS));
|
|
|
|
// calculate rotational rate to get us to desired attitude in time constant
|
|
Quaternion desired_q, current_q, error_q;
|
|
desired_q.from_rotation_matrix(dcm);
|
|
desired_q.normalize();
|
|
current_q.from_rotation_matrix(smoothing.rotation_b2e);
|
|
current_q.normalize();
|
|
error_q = desired_q / current_q;
|
|
error_q.normalize();
|
|
|
|
Vector3f angle_differential;
|
|
error_q.to_axis_angle(angle_differential);
|
|
smoothing.gyro = gyro + angle_differential / time_constant;
|
|
|
|
float R, P, Y;
|
|
smoothing.rotation_b2e.to_euler(&R, &P, &Y);
|
|
float R2, P2, Y2;
|
|
dcm.to_euler(&R2, &P2, &Y2);
|
|
|
|
#if 0
|
|
// @LoggerMessage: SMOO
|
|
// @Description: Smoothed sensor data fed to EKF to avoid inconsistencies
|
|
// @Field: TimeUS: Time since system startup
|
|
// @Field: AEx: Angular Velocity (around x-axis)
|
|
// @Field: AEy: Angular Velocity (around y-axis)
|
|
// @Field: AEz: Angular Velocity (around z-axis)
|
|
// @Field: DPx: Velocity (along x-axis)
|
|
// @Field: DPy: Velocity (along y-axis)
|
|
// @Field: DPz: Velocity (along z-axis)
|
|
// @Field: R: Roll
|
|
// @Field: P: Pitch
|
|
// @Field: Y: Yaw
|
|
// @Field: R2: DCM Roll
|
|
// @Field: P2: DCM Pitch
|
|
// @Field: Y2: DCM Yaw
|
|
AP::logger().Write("SMOO", "TimeUS,AEx,AEy,AEz,DPx,DPy,DPz,R,P,Y,R2,P2,Y2",
|
|
"Qffffffffffff",
|
|
AP_HAL::micros64(),
|
|
degrees(angle_differential.x),
|
|
degrees(angle_differential.y),
|
|
degrees(angle_differential.z),
|
|
delta_pos.x, delta_pos.y, delta_pos.z,
|
|
degrees(R), degrees(P), degrees(Y),
|
|
degrees(R2), degrees(P2), degrees(Y2));
|
|
#endif
|
|
|
|
|
|
// integrate to get new attitude
|
|
smoothing.rotation_b2e.rotate(smoothing.gyro * delta_time);
|
|
smoothing.rotation_b2e.normalize();
|
|
|
|
// integrate to get new position
|
|
smoothing.velocity_ef += accel_e * delta_time;
|
|
smoothing.position += smoothing.velocity_ef * delta_time;
|
|
|
|
smoothing.location = home;
|
|
smoothing.location.offset(smoothing.position.x, smoothing.position.y);
|
|
smoothing.location.alt = static_cast<int32_t>(home.alt - smoothing.position.z * 100.0f);
|
|
|
|
smoothing.last_update_us = now;
|
|
}
|
|
|
|
/*
|
|
return a filtered servo input as a value from -1 to 1
|
|
servo is assumed to be 1000 to 2000, trim at 1500
|
|
*/
|
|
float Aircraft::filtered_idx(float v, uint8_t idx)
|
|
{
|
|
if (sitl->servo_speed <= 0) {
|
|
return v;
|
|
}
|
|
const float cutoff = 1.0f / (2 * M_PI * sitl->servo_speed);
|
|
servo_filter[idx].set_cutoff_frequency(cutoff);
|
|
return servo_filter[idx].apply(v, frame_time_us * 1.0e-6f);
|
|
}
|
|
|
|
|
|
/*
|
|
return a filtered servo input as a value from -1 to 1
|
|
servo is assumed to be 1000 to 2000, trim at 1500
|
|
*/
|
|
float Aircraft::filtered_servo_angle(const struct sitl_input &input, uint8_t idx)
|
|
{
|
|
const float v = (input.servos[idx] - 1500)/500.0f;
|
|
return filtered_idx(v, idx);
|
|
}
|
|
|
|
/*
|
|
return a filtered servo input as a value from 0 to 1
|
|
servo is assumed to be 1000 to 2000
|
|
*/
|
|
float Aircraft::filtered_servo_range(const struct sitl_input &input, uint8_t idx)
|
|
{
|
|
const float v = (input.servos[idx] - 1000)/1000.0f;
|
|
return filtered_idx(v, idx);
|
|
}
|
|
|
|
// extrapolate sensors by a given delta time in seconds
|
|
void Aircraft::extrapolate_sensors(float delta_time)
|
|
{
|
|
Vector3f accel_earth = dcm * accel_body;
|
|
accel_earth.z += GRAVITY_MSS;
|
|
|
|
dcm.rotate(gyro * delta_time);
|
|
dcm.normalize();
|
|
|
|
// work out acceleration as seen by the accelerometers. It sees the kinematic
|
|
// acceleration (ie. real movement), plus gravity
|
|
accel_body = dcm.transposed() * (accel_earth + Vector3f(0,0,-GRAVITY_MSS));
|
|
|
|
// new velocity and position vectors
|
|
velocity_ef += accel_earth * delta_time;
|
|
position += velocity_ef * delta_time;
|
|
velocity_air_ef = velocity_ef + wind_ef;
|
|
velocity_air_bf = dcm.transposed() * velocity_air_ef;
|
|
}
|
|
|
|
void Aircraft::update_external_payload(const struct sitl_input &input)
|
|
{
|
|
external_payload_mass = 0;
|
|
|
|
// update sprayer
|
|
if (sprayer && sprayer->is_enabled()) {
|
|
sprayer->update(input);
|
|
external_payload_mass += sprayer->payload_mass();
|
|
}
|
|
|
|
// update i2c
|
|
if (i2c) {
|
|
i2c->update(*this);
|
|
}
|
|
|
|
// update buzzer
|
|
if (buzzer && buzzer->is_enabled()) {
|
|
buzzer->update(input);
|
|
}
|
|
|
|
// update grippers
|
|
if (gripper && gripper->is_enabled()) {
|
|
gripper->set_alt(hagl());
|
|
gripper->update(input);
|
|
external_payload_mass += gripper->payload_mass();
|
|
}
|
|
if (gripper_epm && gripper_epm->is_enabled()) {
|
|
gripper_epm->update(input);
|
|
external_payload_mass += gripper_epm->payload_mass();
|
|
}
|
|
|
|
// update parachute
|
|
if (parachute && parachute->is_enabled()) {
|
|
parachute->update(input);
|
|
// TODO: add drag to vehicle, presumably proportional to velocity
|
|
}
|
|
|
|
if (precland && precland->is_enabled()) {
|
|
precland->update(get_location(), get_position());
|
|
if (precland->_over_precland_base) {
|
|
local_ground_level += precland->_origin_height;
|
|
}
|
|
}
|
|
|
|
// update RichenPower generator
|
|
if (richenpower) {
|
|
richenpower->update(input);
|
|
}
|
|
|
|
sitl->shipsim.update();
|
|
|
|
// update IntelligentEnergy 2.4kW generator
|
|
if (ie24) {
|
|
ie24->update(input);
|
|
}
|
|
}
|
|
|
|
void Aircraft::add_shove_forces(Vector3f &rot_accel, Vector3f &body_accel)
|
|
{
|
|
const uint32_t now = AP_HAL::millis();
|
|
if (sitl == nullptr) {
|
|
return;
|
|
}
|
|
if (sitl->shove.t == 0) {
|
|
return;
|
|
}
|
|
if (sitl->shove.start_ms == 0) {
|
|
sitl->shove.start_ms = now;
|
|
}
|
|
if (now - sitl->shove.start_ms < uint32_t(sitl->shove.t)) {
|
|
// FIXME: can we get a vector operation here instead?
|
|
body_accel.x += sitl->shove.x;
|
|
body_accel.y += sitl->shove.y;
|
|
body_accel.z += sitl->shove.z;
|
|
} else {
|
|
sitl->shove.start_ms = 0;
|
|
sitl->shove.t = 0;
|
|
}
|
|
}
|
|
|
|
float Aircraft::get_local_updraft(Vector3f currentPos)
|
|
{
|
|
int scenario = sitl->thermal_scenario;
|
|
|
|
#define MAX_THERMALS 10
|
|
|
|
float thermals_w[MAX_THERMALS];
|
|
float thermals_r[MAX_THERMALS];
|
|
float thermals_x[MAX_THERMALS];
|
|
float thermals_y[MAX_THERMALS];
|
|
|
|
int n_thermals = 0;
|
|
|
|
switch (scenario) {
|
|
case 1:
|
|
n_thermals = 1;
|
|
thermals_w[0] = 2.0;
|
|
thermals_r[0] = 80.0;
|
|
thermals_x[0] = -180.0;
|
|
thermals_y[0] = -260.0;
|
|
break;
|
|
case 2:
|
|
n_thermals = 1;
|
|
thermals_w[0] = 4.0;
|
|
thermals_r[0] = 30.0;
|
|
thermals_x[0] = -180.0;
|
|
thermals_y[0] = -260.0;
|
|
break;
|
|
case 3:
|
|
n_thermals = 1;
|
|
thermals_w[0] = 2.0;
|
|
thermals_r[0] = 30.0;
|
|
thermals_x[0] = -180.0;
|
|
thermals_y[0] = -260.0;
|
|
break;
|
|
}
|
|
|
|
// Wind drift at this altitude
|
|
float driftX = sitl->wind_speed * (currentPos.z+100) * cosf(sitl->wind_direction * DEG_TO_RAD);
|
|
float driftY = sitl->wind_speed * (currentPos.z+100) * sinf(sitl->wind_direction * DEG_TO_RAD);
|
|
|
|
int iThermal;
|
|
float w = 0.0f;
|
|
float r2;
|
|
for (iThermal=0;iThermal<n_thermals;iThermal++) {
|
|
Vector3f thermalPos(thermals_x[iThermal] + driftX/thermals_w[iThermal],
|
|
thermals_y[iThermal] + driftY/thermals_w[iThermal],
|
|
0);
|
|
Vector3f relVec = currentPos - thermalPos;
|
|
r2 = relVec.x*relVec.x + relVec.y*relVec.y;
|
|
w += thermals_w[iThermal]*exp(-r2/(thermals_r[iThermal]*thermals_r[iThermal]));
|
|
}
|
|
|
|
return w;
|
|
}
|
|
|
|
void Aircraft::add_twist_forces(Vector3f &rot_accel)
|
|
{
|
|
if (sitl == nullptr) {
|
|
return;
|
|
}
|
|
if (sitl->gnd_behav != -1) {
|
|
ground_behavior = (GroundBehaviour)sitl->gnd_behav.get();
|
|
}
|
|
const uint32_t now = AP_HAL::millis();
|
|
if (sitl == nullptr) {
|
|
return;
|
|
}
|
|
if (sitl->twist.t == 0) {
|
|
return;
|
|
}
|
|
if (sitl->twist.start_ms == 0) {
|
|
sitl->twist.start_ms = now;
|
|
}
|
|
if (now - sitl->twist.start_ms < uint32_t(sitl->twist.t)) {
|
|
// FIXME: can we get a vector operation here instead?
|
|
rot_accel.x += sitl->twist.x;
|
|
rot_accel.y += sitl->twist.y;
|
|
rot_accel.z += sitl->twist.z;
|
|
} else {
|
|
sitl->twist.start_ms = 0;
|
|
sitl->twist.t = 0;
|
|
}
|
|
}
|