ardupilot/libraries/AP_HAL_ChibiOS/CANFDIface.cpp

1203 lines
40 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2014 Pavel Kirienko
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Siddharth Bharat Purohit
*/
#include <hal.h>
#include "AP_HAL_ChibiOS.h"
#if HAL_NUM_CAN_IFACES
#include <cassert>
#include <cstring>
#include <AP_Math/AP_Math.h>
# include <hal.h>
#include <AP_CANManager/AP_CANManager.h>
#include <AP_Common/ExpandingString.h>
# if defined(STM32H7XX) || defined(STM32G4)
#include "CANFDIface.h"
#define FDCAN1_IT0_IRQHandler STM32_FDCAN1_IT0_HANDLER
#define FDCAN1_IT1_IRQHandler STM32_FDCAN1_IT1_HANDLER
#define FDCAN2_IT0_IRQHandler STM32_FDCAN2_IT0_HANDLER
#define FDCAN2_IT1_IRQHandler STM32_FDCAN2_IT1_HANDLER
// FIFO elements are spaced at 18 words
#define FDCAN_FRAME_BUFFER_SIZE 18
//Message RAM Allocations in Word lengths
#if defined(STM32H7)
#define MAX_FILTER_LIST_SIZE 78U //78 element Standard Filter List elements or 40 element Extended Filter List
#define FDCAN_NUM_RXFIFO0_SIZE 108U //6 Frames
#define FDCAN_TX_FIFO_BUFFER_SIZE 126U //7 Frames
#define MESSAGE_RAM_END_ADDR 0x4000B5FC
#elif defined(STM32G4)
#define MAX_FILTER_LIST_SIZE 80U //80 element Standard Filter List elements or 40 element Extended Filter List
#define FDCAN_NUM_RXFIFO0_SIZE 104U //26 Frames
#define FDCAN_TX_FIFO_BUFFER_SIZE 128U //32 Frames
#define FDCAN_MESSAGERAM_STRIDE 0x350 // separation of messageram areas
#define FDCAN_EXFILTER_OFFSET 0x70
#define FDCAN_RXFIFO0_OFFSET 0xB0
#define FDCAN_RXFIFO1_OFFSET 0x188
#define FDCAN_TXFIFO_OFFSET 0x278
#define MESSAGE_RAM_END_ADDR 0x4000B5FC
#else
#error "Unsupported MCU for FDCAN"
#endif
extern AP_HAL::HAL& hal;
#define STR(x) #x
#define XSTR(x) STR(x)
#if defined(STM32H7)
static_assert(STM32_FDCANCLK == 80U*1000U*1000U, "FDCAN clock must be 80MHz, got " XSTR(STM32_FDCANCLK));
#else
static_assert(STM32_FDCANCLK <= 80U*1000U*1000U, "FDCAN clock must be max 80MHz, got " XSTR(STM32_FDCANCLK));
#endif
using namespace ChibiOS;
#if HAL_CANMANAGER_ENABLED
#define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANFDIface", fmt, ##args); } while (0)
#else
#define Debug(fmt, args...)
#endif
constexpr CANIface::CanType* const CANIface::Can[];
static ChibiOS::CANIface* can_ifaces[HAL_NUM_CAN_IFACES];
uint8_t CANIface::next_interface;
// mapping from logical interface to physical. First physical is 0, first logical is 0
static constexpr uint8_t can_interfaces[HAL_NUM_CAN_IFACES] = { HAL_CAN_INTERFACE_LIST };
// mapping from physical interface back to logical. First physical is 0, first logical is 0
static constexpr int8_t can_iface_to_idx[3] = { HAL_CAN_INTERFACE_REV_LIST };
#define REG_SET_TIMEOUT 250 // if it takes longer than 250ms for setting a register we have failed
static inline bool driver_initialised(uint8_t iface_index)
{
if (can_ifaces[iface_index] == nullptr) {
return false;
}
return true;
}
static inline void handleCANInterrupt(uint8_t phys_index, uint8_t line_index)
{
const int8_t iface_index = can_iface_to_idx[phys_index];
if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) {
return;
}
if (!driver_initialised(iface_index)) {
//Just reset all the interrupts and return
CANIface::Can[iface_index]->IR = FDCAN_IR_RF0N;
CANIface::Can[iface_index]->IR = FDCAN_IR_RF1N;
CANIface::Can[iface_index]->IR = FDCAN_IR_TEFN;
return;
}
if (line_index == 0) {
if ((CANIface::Can[iface_index]->IR & FDCAN_IR_RF0N) ||
(CANIface::Can[iface_index]->IR & FDCAN_IR_RF0F)) {
CANIface::Can[iface_index]->IR = FDCAN_IR_RF0N | FDCAN_IR_RF0F;
can_ifaces[iface_index]->handleRxInterrupt(0);
}
if ((CANIface::Can[iface_index]->IR & FDCAN_IR_RF1N) ||
(CANIface::Can[iface_index]->IR & FDCAN_IR_RF1F)) {
CANIface::Can[iface_index]->IR = FDCAN_IR_RF1N | FDCAN_IR_RF1F;
can_ifaces[iface_index]->handleRxInterrupt(1);
}
} else {
if (CANIface::Can[iface_index]->IR & FDCAN_IR_TC) {
CANIface::Can[iface_index]->IR = FDCAN_IR_TC;
uint64_t timestamp_us = AP_HAL::micros64();
if (timestamp_us > 0) {
timestamp_us--;
}
can_ifaces[iface_index]->handleTxCompleteInterrupt(timestamp_us);
}
if ((CANIface::Can[iface_index]->IR & FDCAN_IR_BO)) {
CANIface::Can[iface_index]->IR = FDCAN_IR_BO;
can_ifaces[iface_index]->handleBusOffInterrupt();
}
}
can_ifaces[iface_index]->pollErrorFlagsFromISR();
}
uint32_t CANIface::FDCANMessageRAMOffset_ = 0;
CANIface::CANIface(uint8_t index) :
self_index_(index),
rx_bytebuffer_((uint8_t*)rx_buffer, sizeof(rx_buffer)),
rx_queue_(&rx_bytebuffer_)
{
if (index >= HAL_NUM_CAN_IFACES) {
AP_HAL::panic("Bad CANIface index.");
} else {
can_ = Can[index];
}
}
// constructor suitable for array
CANIface::CANIface() :
CANIface(next_interface++)
{}
void CANIface::handleBusOffInterrupt()
{
_detected_bus_off = true;
}
bool CANIface::computeTimings(const uint32_t target_bitrate, Timings& out_timings)
{
if (target_bitrate < 1) {
return false;
}
/*
* Hardware configuration
*/
const uint32_t pclk = STM32_FDCANCLK;
static const int MaxBS1 = 16;
static const int MaxBS2 = 8;
/*
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG
* CAN in Automation, 2003
*
* According to the source, optimal quanta per bit are:
* Bitrate Optimal Maximum
* 1000 kbps 8 10
* 500 kbps 16 17
* 250 kbps 16 17
* 125 kbps 16 17
*/
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17;
static const int MaxSamplePointLocation = 900;
/*
* Computing (prescaler * BS):
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified
* let:
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit
* PRESCALER_BS = PRESCALER * BS
* ==>
* PRESCALER_BS = PCLK / BITRATE
*/
const uint32_t prescaler_bs = pclk / target_bitrate;
/*
* Searching for such prescaler value so that the number of quanta per bit is highest.
*/
uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1);
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) {
if (bs1_bs2_sum <= 2) {
return false; // No solution
}
bs1_bs2_sum--;
}
const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum);
if ((prescaler < 1U) || (prescaler > 1024U)) {
Debug("Timings: No Solution found\n");
return false; // No solution
}
/*
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum.
* We need to find the values so that the sample point is as close as possible to the optimal value.
*
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *)
* {{bs2 -> (1 + bs1)/7}}
*
* Hence:
* bs2 = (1 + bs1) / 7
* bs1 = (7 * bs1_bs2_sum - 1) / 8
*
* Sample point location can be computed as follows:
* Sample point location = (1 + bs1) / (1 + bs1 + bs2)
*
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one:
* - With rounding to nearest
* - With rounding to zero
*/
struct BsPair {
uint8_t bs1;
uint8_t bs2;
uint16_t sample_point_permill;
BsPair() :
bs1(0),
bs2(0),
sample_point_permill(0)
{ }
BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) :
bs1(arg_bs1),
bs2(uint8_t(bs1_bs2_sum - bs1)),
sample_point_permill(uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2)))
{}
bool isValid() const
{
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2);
}
};
// First attempt with rounding to nearest
BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8));
if (solution.sample_point_permill > MaxSamplePointLocation) {
// Second attempt with rounding to zero
solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8));
}
Debug("Timings: quanta/bit: %d, sample point location: %.1f%%\n",
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F);
/*
* Final validation
* Helpful Python:
* def sample_point_from_btr(x):
* assert 0b0011110010000000111111000000000 & x == 0
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511
* return (1+ts1+1)/(1+ts1+1+ts2+1)
*
*/
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) {
Debug("Timings: Invalid Solution %lu %lu %d %d %lu \n", pclk, prescaler, int(solution.bs1), int(solution.bs2), (pclk / (prescaler * (1 + solution.bs1 + solution.bs2))));
return false;
}
out_timings.sample_point_permill = solution.sample_point_permill;
out_timings.prescaler = uint16_t(prescaler - 1U);
out_timings.sjw = 0; // Which means one
out_timings.bs1 = uint8_t(solution.bs1 - 1);
out_timings.bs2 = uint8_t(solution.bs2 - 1);
return true;
}
int16_t CANIface::send(const AP_HAL::CANFrame& frame, uint64_t tx_deadline,
CanIOFlags flags)
{
if (!initialised_) {
return -1;
}
stats.tx_requests++;
if (frame.isErrorFrame() || (frame.dlc > 8 && !frame.isCanFDFrame()) ||
frame.dlc > 15) {
stats.tx_rejected++;
return -1;
}
{
CriticalSectionLocker lock;
/*
* Seeking for an empty slot
*/
uint8_t index;
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) {
stats.tx_overflow++;
return 0; //we don't have free space
}
index = ((can_->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos);
// Copy Frame to RAM
// Calculate Tx element address
uint32_t* buffer = (uint32_t *)(MessageRam_.TxFIFOQSA + (index * FDCAN_FRAME_BUFFER_SIZE * 4));
//Setup Frame ID
if (frame.isExtended()) {
buffer[0] = (IDE | frame.id);
} else {
buffer[0] = (frame.id << 18);
}
if (frame.isRemoteTransmissionRequest()) {
buffer[0] |= RTR;
}
//Write Data Length Code, and Message Marker
buffer[1] = frame.dlc << 16 | index << 24;
if (frame.isCanFDFrame()) {
buffer[1] |= FDF | BRS; // do CAN FD transfer and bit rate switching
stats.fdf_tx_requests++;
pending_tx_[index].canfd_frame = true;
} else {
pending_tx_[index].canfd_frame = false;
}
// Write Frame to the message RAM
const uint8_t data_length = AP_HAL::CANFrame::dlcToDataLength(frame.dlc);
uint32_t *data_ptr = &buffer[2];
for (uint8_t i = 0; i < (data_length+3)/4; i++) {
data_ptr[i] = frame.data_32[i];
}
//Set Add Request
can_->TXBAR = (1 << index);
//Registering the pending transmission so we can track its deadline and loopback it as needed
pending_tx_[index].deadline = tx_deadline;
pending_tx_[index].frame = frame;
pending_tx_[index].loopback = (flags & AP_HAL::CANIface::Loopback) != 0;
pending_tx_[index].abort_on_error = (flags & AP_HAL::CANIface::AbortOnError) != 0;
pending_tx_[index].index = index;
// setup frame initial state
pending_tx_[index].aborted = false;
pending_tx_[index].setup = true;
pending_tx_[index].pushed = false;
}
return AP_HAL::CANIface::send(frame, tx_deadline, flags);
}
int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us, CanIOFlags& out_flags)
{
{
CriticalSectionLocker lock;
CanRxItem rx_item;
if (!rx_queue_.pop(rx_item) || !initialised_) {
return 0;
}
out_frame = rx_item.frame;
out_timestamp_us = rx_item.timestamp_us;
out_flags = rx_item.flags;
}
return AP_HAL::CANIface::receive(out_frame, out_timestamp_us, out_flags);
}
bool CANIface::configureFilters(const CanFilterConfig* filter_configs,
uint16_t num_configs)
{
// only enable filters in AP_Periph. It makes no sense on the flight controller
#if !defined(HAL_BUILD_AP_PERIPH) || defined(STM32G4)
// no filtering
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
uint32_t while_start_ms = AP_HAL::millis();
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
return false;
}
}
initialised_ = true;
return true;
#else
uint32_t num_extid = 0, num_stdid = 0;
uint32_t total_available_list_size = MAX_FILTER_LIST_SIZE;
uint32_t* filter_ptr;
if (initialised_ || mode_ != FilteredMode) {
// we are already initialised can't do anything here
return false;
}
//count number of frames of each type
for (uint8_t i = 0; i < num_configs; i++) {
const CanFilterConfig* const cfg = filter_configs + i;
if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) {
num_extid++;
} else {
num_stdid++;
}
}
CriticalSectionLocker lock;
//Allocate Message RAM for Standard ID Filter List
if (num_stdid == 0) { //No Frame with Standard ID is to be accepted
#if defined(STM32G4)
can_->RXGFC |= 0x2; //Reject All Standard ID Frames
#else
can_->GFC |= 0x2; //Reject All Standard ID Frames
#endif
} else if ((num_stdid < total_available_list_size) && (num_stdid <= 128)) {
can_->SIDFC = (FDCANMessageRAMOffset_ << 2) | (num_stdid << 16);
MessageRam_.StandardFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
FDCANMessageRAMOffset_ += num_stdid;
total_available_list_size -= num_stdid;
can_->GFC |= (0x3U << 4); //Reject non matching Standard frames
} else { //The List is too big, return fail
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
uint32_t while_start_ms = AP_HAL::millis();
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
return false;
}
}
return false;
}
if (num_stdid) {
num_stdid = 0; //reset list count
filter_ptr = (uint32_t*)MessageRam_.StandardFilterSA;
//Run through the filter list and setup standard id filter list
for (uint8_t i = 0; i < num_configs; i++) {
uint32_t id = 0;
uint32_t mask = 0;
const CanFilterConfig* const cfg = filter_configs + i;
if (!((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF))) {
id = (cfg->id & AP_HAL::CANFrame::MaskStdID); // Regular std frames, nothing fancy.
mask = (cfg->mask & 0x7F);
filter_ptr[num_stdid] = 0x2U << 30 | //Classic CAN Filter
0x1U << 27 | //Store in Rx FIFO0 if filter matches
id << 16 |
mask;
num_stdid++;
}
}
}
//Allocate Message RAM for Extended ID Filter List
if (num_extid == 0) { //No Frame with Extended ID is to be accepted
can_->GFC |= 0x1; //Reject All Extended ID Frames
} else if ((num_extid < (total_available_list_size/2)) && (num_extid <= 64)) {
can_->XIDFC = (FDCANMessageRAMOffset_ << 2) | (num_extid << 16);
MessageRam_.ExtendedFilterSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
FDCANMessageRAMOffset_ += num_extid*2;
can_->GFC |= (0x3U << 2); // Reject non matching Extended frames
} else { //The List is too big, return fail
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
uint32_t while_start_ms = AP_HAL::millis();
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
return false;
}
}
return false;
}
if (num_extid) {
num_extid = 0;
filter_ptr = (uint32_t*)MessageRam_.ExtendedFilterSA;
//Run through the filter list and setup extended id filter list
for (uint8_t i = 0; i < num_configs; i++) {
uint32_t id = 0;
uint32_t mask = 0;
const CanFilterConfig* const cfg = filter_configs + i;
if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) {
id = (cfg->id & AP_HAL::CANFrame::MaskExtID);
mask = (cfg->mask & AP_HAL::CANFrame::MaskExtID);
filter_ptr[num_extid*2] = 0x1U << 29 | id; //Store in Rx FIFO0 if filter matches
filter_ptr[num_extid*2 + 1] = 0x2U << 30 | mask; // Classic CAN Filter
num_extid++;
}
}
}
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) {
//We are overflowing the limit of Allocated Message RAM
AP_HAL::panic("CANFDIface: Message RAM Overflow!");
}
// Finally get out of Config Mode
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
uint32_t while_start_ms = AP_HAL::millis();
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
return false;
}
}
initialised_ = true;
return true;
#endif // AP_Periph, STM32G4
}
uint16_t CANIface::getNumFilters() const
{
return MAX_FILTER_LIST_SIZE;
}
bool CANIface::clock_init_ = false;
bool CANIface::init(const uint32_t bitrate, const uint32_t fdbitrate, const OperatingMode mode)
{
Debug("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode));
if (self_index_ > HAL_NUM_CAN_IFACES) {
Debug("CAN drv init failed");
return false;
}
if (can_ifaces[self_index_] == nullptr) {
can_ifaces[self_index_] = this;
#if !defined(HAL_BOOTLOADER_BUILD)
hal.can[self_index_] = this;
#endif
}
bitrate_ = bitrate;
mode_ = mode;
//Only do it once
//Doing it second time will reset the previously initialised bus
if (!clock_init_) {
CriticalSectionLocker lock;
#if defined(STM32G4)
RCC->APB1ENR1 |= RCC_APB1ENR1_FDCANEN;
RCC->APB1RSTR1 |= RCC_APB1RSTR1_FDCANRST;
RCC->APB1RSTR1 &= ~RCC_APB1RSTR1_FDCANRST;
#else
RCC->APB1HENR |= RCC_APB1HENR_FDCANEN;
RCC->APB1HRSTR |= RCC_APB1HRSTR_FDCANRST;
RCC->APB1HRSTR &= ~RCC_APB1HRSTR_FDCANRST;
#endif
clock_init_ = true;
}
/*
* IRQ
*/
if (!irq_init_) {
CriticalSectionLocker lock;
switch (can_interfaces[self_index_]) {
case 0:
nvicEnableVector(FDCAN1_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
nvicEnableVector(FDCAN1_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
break;
#ifdef FDCAN2
case 1:
nvicEnableVector(FDCAN2_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
nvicEnableVector(FDCAN2_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
break;
#endif
#ifdef FDCAN3
case 2:
nvicEnableVector(FDCAN3_IT0_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
nvicEnableVector(FDCAN3_IT1_IRQn, CORTEX_MAX_KERNEL_PRIORITY);
break;
#endif
}
irq_init_ = true;
}
// Setup FDCAN for configuration mode and disable all interrupts
{
CriticalSectionLocker lock;
can_->CCCR &= ~FDCAN_CCCR_CSR; // Exit sleep mode
uint32_t while_start_ms = AP_HAL::millis();
while ((can_->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA) {
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
return false;
}
} //Wait for wake up ack
can_->CCCR |= FDCAN_CCCR_INIT; // Request init
while_start_ms = AP_HAL::millis();
while ((can_->CCCR & FDCAN_CCCR_INIT) == 0) {
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
return false;
}
}
can_->CCCR |= FDCAN_CCCR_CCE; //Enable Config change
can_->IE = 0; // Disable interrupts while initialization is in progress
}
/*
* Object state - interrupts are disabled, so it's safe to modify it now
*/
rx_queue_.clear();
for (uint32_t i=0; i < NumTxMailboxes; i++) {
pending_tx_[i] = CanTxItem();
}
peak_tx_mailbox_index_ = 0;
had_activity_ = false;
/*
* CAN timings for this bitrate
*/
if (!computeTimings(bitrate, timings)) {
can_->CCCR &= ~FDCAN_CCCR_INIT;
uint32_t while_start_ms = AP_HAL::millis();
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
return false;
}
}
return false;
}
_bitrate = bitrate;
Debug("Timings: presc=%u sjw=%u bs1=%u bs2=%u\n",
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2));
//setup timing register
can_->NBTP = ((timings.sjw << FDCAN_NBTP_NSJW_Pos) |
(timings.bs1 << FDCAN_NBTP_NTSEG1_Pos) |
(timings.bs2 << FDCAN_NBTP_NTSEG2_Pos) |
(timings.prescaler << FDCAN_NBTP_NBRP_Pos));
if (fdbitrate) {
if (!computeTimings(fdbitrate, fdtimings)) {
can_->CCCR &= ~FDCAN_CCCR_INIT;
uint32_t while_start_ms = AP_HAL::millis();
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
return false;
}
}
return false;
}
_fdbitrate = fdbitrate;
Debug("CANFD Timings: presc=%u bs1=%u bs2=%u\n",
unsigned(fdtimings.prescaler), unsigned(fdtimings.bs1), unsigned(fdtimings.bs2));
can_->DBTP = ((fdtimings.bs1 << FDCAN_DBTP_DTSEG1_Pos) |
(fdtimings.bs2 << FDCAN_DBTP_DTSEG2_Pos) |
(fdtimings.prescaler << FDCAN_DBTP_DBRP_Pos));
}
//RX Config
#if defined(STM32H7)
can_->RXESC = 0; //Set for 8Byte Frames
#endif
//Setup Message RAM
setupMessageRam();
// Reset Bus Off
_detected_bus_off = false;
//Clear all Interrupts
can_->IR = 0x3FFFFFFF;
//Enable Interrupts
can_->IE = FDCAN_IE_TCE | // Transmit Complete interrupt enable
FDCAN_IE_BOE | // Bus off Error Interrupt enable
FDCAN_IE_RF0NE | // RX FIFO 0 new message
FDCAN_IE_RF0FE | // Rx FIFO 0 FIFO Full
FDCAN_IE_RF1NE | // RX FIFO 1 new message
FDCAN_IE_RF1FE; // Rx FIFO 1 FIFO Full
#if defined(STM32G4)
can_->ILS = FDCAN_ILS_PERR | FDCAN_ILS_SMSG;
#else
can_->ILS = FDCAN_ILS_TCL | FDCAN_ILS_BOE; //Set Line 1 for Transmit Complete Event Interrupt and Bus Off Interrupt
#endif
// And Busoff error
#if defined(STM32G4)
can_->TXBTIE = 0x7;
#else
can_->TXBTIE = 0xFFFFFFFF;
#endif
can_->ILE = 0x3;
can_->CCCR |= FDCAN_CCCR_FDOE | FDCAN_CCCR_BRSE; // enable sending CAN FD frames, and Bitrate switching
// If mode is Filtered then we finish the initialisation in configureFilter method
// otherwise we finish here
if (mode != FilteredMode) {
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
uint32_t while_start_ms = AP_HAL::millis();
while ((can_->CCCR & FDCAN_CCCR_INIT) == 1) {
if ((AP_HAL::millis() - while_start_ms) > REG_SET_TIMEOUT) {
return false;
}
}
//initialised
initialised_ = true;
}
return true;
}
void CANIface::clear_rx()
{
CriticalSectionLocker lock;
rx_queue_.clear();
}
void CANIface::setupMessageRam()
{
#if defined(STM32G4)
const uint32_t base = SRAMCAN_BASE + FDCAN_MESSAGERAM_STRIDE * can_interfaces[self_index_];
memset((void*)base, 0, FDCAN_MESSAGERAM_STRIDE);
MessageRam_.StandardFilterSA = base;
MessageRam_.ExtendedFilterSA = base + FDCAN_EXFILTER_OFFSET;
MessageRam_.RxFIFO0SA = base + FDCAN_RXFIFO0_OFFSET;
MessageRam_.RxFIFO1SA = base + FDCAN_RXFIFO1_OFFSET;
MessageRam_.TxFIFOQSA = base + FDCAN_TXFIFO_OFFSET;
can_->TXBC = 0; // fifo mode
#else
uint32_t num_elements = 0;
can_->RXESC = 0x777; //Support upto 64byte long frames
can_->TXESC = 0x7; //Support upto 64byte long frames
// Rx FIFO 0 start address and element count
num_elements = MIN((FDCAN_NUM_RXFIFO0_SIZE/FDCAN_FRAME_BUFFER_SIZE), 64U);
if (num_elements) {
can_->RXF0C = (FDCANMessageRAMOffset_ << 2) | (num_elements << 16);
MessageRam_.RxFIFO0SA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE;
}
// Tx FIFO/queue start address and element count
num_elements = MIN((FDCAN_TX_FIFO_BUFFER_SIZE/FDCAN_FRAME_BUFFER_SIZE), 32U);
if (num_elements) {
can_->TXBC = (FDCANMessageRAMOffset_ << 2) | (num_elements << 24);
MessageRam_.TxFIFOQSA = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
FDCANMessageRAMOffset_ += num_elements*FDCAN_FRAME_BUFFER_SIZE;
}
MessageRam_.EndAddress = SRAMCAN_BASE + (FDCANMessageRAMOffset_ * 4U);
if (MessageRam_.EndAddress > MESSAGE_RAM_END_ADDR) {
//We are overflowing the limit of Allocated Message RAM
AP_HAL::panic("CANFDIface: Message RAM Overflow!");
return;
}
#endif
}
void CANIface::handleTxCompleteInterrupt(const uint64_t timestamp_us)
{
for (uint8_t i = 0; i < NumTxMailboxes; i++) {
if ((can_->TXBTO & (1UL << i))) {
if (!pending_tx_[i].pushed) {
stats.tx_success++;
if (pending_tx_[i].canfd_frame) {
stats.fdf_tx_success++;
}
pending_tx_[i].pushed = true;
} else {
continue;
}
if (pending_tx_[i].loopback && had_activity_) {
CanRxItem rx_item;
rx_item.frame = pending_tx_[i].frame;
rx_item.timestamp_us = timestamp_us;
rx_item.flags = AP_HAL::CANIface::Loopback;
add_to_rx_queue(rx_item);
}
if (event_handle_ != nullptr) {
stats.num_events++;
#if CH_CFG_USE_EVENTS == TRUE
evt_src_.signalI(1 << self_index_);
#endif
}
}
}
}
bool CANIface::readRxFIFO(uint8_t fifo_index)
{
uint32_t *frame_ptr;
uint32_t index;
uint64_t timestamp_us = AP_HAL::micros64();
if (fifo_index == 0) {
#if !defined(STM32G4)
//Check if RAM allocated to RX FIFO
if ((can_->RXF0C & FDCAN_RXF0C_F0S) == 0) {
return false;
}
#endif
//Register Message Lost as a hardware error
if ((can_->RXF0S & FDCAN_RXF0S_RF0L) != 0) {
stats.rx_errors++;
}
if ((can_->RXF0S & FDCAN_RXF0S_F0FL) == 0) {
return false; //No More messages in FIFO
} else {
index = ((can_->RXF0S & FDCAN_RXF0S_F0GI) >> 8);
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO0SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4));
}
} else if (fifo_index == 1) {
#if !defined(STM32G4)
//Check if RAM allocated to RX FIFO
if ((can_->RXF1C & FDCAN_RXF1C_F1S) == 0) {
return false;
}
#endif
//Register Message Lost as a hardware error
if ((can_->RXF1S & FDCAN_RXF1S_RF1L) != 0) {
stats.rx_errors++;
}
if ((can_->RXF1S & FDCAN_RXF1S_F1FL) == 0) {
return false;
} else {
index = ((can_->RXF1S & FDCAN_RXF1S_F1GI) >> 8);
frame_ptr = (uint32_t *)(MessageRam_.RxFIFO1SA + (index * FDCAN_FRAME_BUFFER_SIZE * 4));
}
} else {
return false;
}
// Read the frame contents
AP_HAL::CANFrame frame {};
uint32_t id = frame_ptr[0];
if ((id & IDE) == 0) {
//Standard ID
frame.id = ((id & STID_MASK) >> 18) & AP_HAL::CANFrame::MaskStdID;
} else {
//Extended ID
frame.id = (id & EXID_MASK) & AP_HAL::CANFrame::MaskExtID;
frame.id |= AP_HAL::CANFrame::FlagEFF;
}
if ((id & RTR) != 0) {
frame.id |= AP_HAL::CANFrame::FlagRTR;
}
if (frame_ptr[1] & FDF) {
frame.setCanFD(true);
stats.fdf_rx_received++;
} else {
frame.setCanFD(false);
}
frame.dlc = (frame_ptr[1] & DLC_MASK) >> 16;
uint8_t *data = (uint8_t*)&frame_ptr[2];
for (uint8_t i = 0; i < AP_HAL::CANFrame::dlcToDataLength(frame.dlc); i++) {
frame.data[i] = data[i];
}
//Acknowledge the FIFO entry we just read
if (fifo_index == 0) {
can_->RXF0A = index;
} else if (fifo_index == 1) {
can_->RXF1A = index;
}
/*
* Store with timeout into the FIFO buffer
*/
CanRxItem rx_item;
rx_item.frame = frame;
rx_item.timestamp_us = timestamp_us;
rx_item.flags = 0;
if (add_to_rx_queue(rx_item)) {
stats.rx_received++;
} else {
stats.rx_overflow++;
}
return true;
}
void CANIface::handleRxInterrupt(uint8_t fifo_index)
{
while (readRxFIFO(fifo_index)) {
had_activity_ = true;
}
if (event_handle_ != nullptr) {
stats.num_events++;
#if CH_CFG_USE_EVENTS == TRUE
evt_src_.signalI(1 << self_index_);
#endif
}
}
/**
* This method is used to count errors and abort transmission on error if necessary.
* This functionality used to be implemented in the SCE interrupt handler, but that approach was
* generating too much processing overhead, especially on disconnected interfaces.
*
* Should be called from RX ISR, TX ISR, and select(); interrupts must be enabled.
*/
void CANIface::pollErrorFlagsFromISR()
{
const uint8_t cel = can_->ECR >> 16;
if (cel != 0) {
stats.ecr = can_->ECR;
for (int i = 0; i < NumTxMailboxes; i++) {
if (!pending_tx_[i].abort_on_error || pending_tx_[i].aborted) {
continue;
}
if (((1 << pending_tx_[i].index) & can_->TXBRP)) {
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission
pending_tx_[i].aborted = true;
stats.tx_abort++;
}
}
}
}
void CANIface::pollErrorFlags()
{
CriticalSectionLocker cs_locker;
pollErrorFlagsFromISR();
}
bool CANIface::canAcceptNewTxFrame() const
{
#if !defined(STM32G4)
//Check if Tx FIFO is allocated
if ((can_->TXBC & FDCAN_TXBC_TFQS) == 0) {
return false;
}
#endif
if ((can_->TXFQS & FDCAN_TXFQS_TFQF) != 0) {
return false; //we don't have free space
}
return true;
}
/**
* Total number of hardware failures and other kinds of errors (e.g. queue overruns).
* May increase continuously if the interface is not connected to the bus.
*/
uint32_t CANIface::getErrorCount() const
{
CriticalSectionLocker lock;
return stats.num_busoff_err +
stats.rx_errors +
stats.rx_overflow +
stats.tx_rejected +
stats.tx_abort +
stats.tx_timedout;
}
#if CH_CFG_USE_EVENTS == TRUE
ChibiOS::EventSource CANIface::evt_src_;
bool CANIface::set_event_handle(AP_HAL::EventHandle* handle)
{
CriticalSectionLocker lock;
event_handle_ = handle;
event_handle_->set_source(&evt_src_);
return event_handle_->register_event(1 << self_index_);
}
#endif
bool CANIface::isRxBufferEmpty() const
{
CriticalSectionLocker lock;
return rx_queue_.available() == 0;
}
void CANIface::clearErrors()
{
if (_detected_bus_off) {
//Try Recovering from BusOff
//While in Bus off mode the CAN Peripheral is put
//into INIT mode, when we ask Peripheral to get out
//of INIT mode, the bit stream processor (BSP) synchronizes
//itself to the data transfer on the CAN bus by
//waiting for the occurrence of a sequence of 11 consecutive
//recessive bits (Bus_Idle) before it can take part in bus
//activities and start the message transfer
can_->CCCR &= ~FDCAN_CCCR_INIT; // Leave init mode
stats.num_busoff_err++;
_detected_bus_off = false;
}
}
void CANIface::discardTimedOutTxMailboxes(uint64_t current_time)
{
CriticalSectionLocker lock;
for (int i = 0; i < NumTxMailboxes; i++) {
if (pending_tx_[i].aborted || !pending_tx_[i].setup) {
continue;
}
if (((1 << pending_tx_[i].index) & can_->TXBRP) && pending_tx_[i].deadline < current_time) {
can_->TXBCR = 1 << pending_tx_[i].index; // Goodnight sweet transmission
pending_tx_[i].aborted = true;
stats.tx_timedout++;
}
}
}
void CANIface::checkAvailable(bool& read, bool& write, const AP_HAL::CANFrame* pending_tx) const
{
write = false;
read = !isRxBufferEmpty();
if (pending_tx != nullptr) {
write = canAcceptNewTxFrame();
}
}
bool CANIface::select(bool &read, bool &write,
const AP_HAL::CANFrame* pending_tx,
uint64_t blocking_deadline)
{
const bool in_read = read;
const bool in_write= write;
uint64_t time = AP_HAL::micros64();
if (!read && !write) {
//invalid request
return false;
}
discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots
pollErrorFlags();
clearErrors();
checkAvailable(read, write, pending_tx); // Check if we already have some of the requested events
if ((read && in_read) || (write && in_write)) {
return true;
}
while (time < blocking_deadline) {
if (event_handle_ == nullptr) {
break;
}
event_handle_->wait(blocking_deadline - time); // Block until timeout expires or any iface updates
checkAvailable(read, write, pending_tx); // Check what we got
if ((read && in_read) || (write && in_write)) {
return true;
}
time = AP_HAL::micros64();
}
return false;
}
#if !defined(HAL_BOOTLOADER_BUILD)
void CANIface::get_stats(ExpandingString &str)
{
CriticalSectionLocker lock;
str.printf("------- Clock Config -------\n"
"CAN_CLK_FREQ: %luMHz\n"
"Std Timings: bitrate=%lu presc=%u\n"
"sjw=%u bs1=%u bs2=%u sample_point=%f%%\n"
"FD Timings: bitrate=%lu presc=%u\n"
"sjw=%u bs1=%u bs2=%u sample_point=%f%%\n"
"------- CAN Interface Stats -------\n"
"tx_requests: %lu\n"
"tx_rejected: %lu\n"
"tx_overflow: %lu\n"
"tx_success: %lu\n"
"tx_timedout: %lu\n"
"tx_abort: %lu\n"
"rx_received: %lu\n"
"rx_overflow: %lu\n"
"rx_errors: %lu\n"
"num_busoff_err: %lu\n"
"num_events: %lu\n"
"ECR: %lx\n"
"fdf_rx: %lu\n"
"fdf_tx_req: %lu\n"
"fdf_tx: %lu\n",
STM32_FDCANCLK/1000000UL,
_bitrate, unsigned(timings.prescaler),
unsigned(timings.sjw), unsigned(timings.bs1),
unsigned(timings.bs2), timings.sample_point_permill/10.0f,
_fdbitrate, unsigned(fdtimings.prescaler),
unsigned(fdtimings.sjw), unsigned(fdtimings.bs1),
unsigned(fdtimings.bs2), timings.sample_point_permill/10.0f,
stats.tx_requests,
stats.tx_rejected,
stats.tx_overflow,
stats.tx_success,
stats.tx_timedout,
stats.tx_abort,
stats.rx_received,
stats.rx_overflow,
stats.rx_errors,
stats.num_busoff_err,
stats.num_events,
stats.ecr,
stats.fdf_rx_received,
stats.fdf_tx_requests,
stats.fdf_tx_success);
}
#endif
/*
* Interrupt handlers
*/
extern "C"
{
#ifdef HAL_CAN_IFACE1_ENABLE
// FDCAN1
CH_IRQ_HANDLER(FDCAN1_IT0_IRQHandler);
CH_IRQ_HANDLER(FDCAN1_IT0_IRQHandler)
{
CH_IRQ_PROLOGUE();
handleCANInterrupt(0, 0);
CH_IRQ_EPILOGUE();
}
CH_IRQ_HANDLER(FDCAN1_IT1_IRQHandler);
CH_IRQ_HANDLER(FDCAN1_IT1_IRQHandler)
{
CH_IRQ_PROLOGUE();
handleCANInterrupt(0, 1);
CH_IRQ_EPILOGUE();
}
#endif
#ifdef HAL_CAN_IFACE2_ENABLE
// FDCAN2
CH_IRQ_HANDLER(FDCAN2_IT0_IRQHandler);
CH_IRQ_HANDLER(FDCAN2_IT0_IRQHandler)
{
CH_IRQ_PROLOGUE();
handleCANInterrupt(1, 0);
CH_IRQ_EPILOGUE();
}
CH_IRQ_HANDLER(FDCAN2_IT1_IRQHandler);
CH_IRQ_HANDLER(FDCAN2_IT1_IRQHandler)
{
CH_IRQ_PROLOGUE();
handleCANInterrupt(1, 1);
CH_IRQ_EPILOGUE();
}
#endif
#ifdef HAL_CAN_IFACE3_ENABLE
// FDCAN3
CH_IRQ_HANDLER(FDCAN3_IT0_IRQHandler);
CH_IRQ_HANDLER(FDCAN3_IT0_IRQHandler)
{
CH_IRQ_PROLOGUE();
handleCANInterrupt(2, 0);
CH_IRQ_EPILOGUE();
}
CH_IRQ_HANDLER(FDCAN3_IT1_IRQHandler);
CH_IRQ_HANDLER(FDCAN3_IT1_IRQHandler)
{
CH_IRQ_PROLOGUE();
handleCANInterrupt(2, 1);
CH_IRQ_EPILOGUE();
}
#endif
} // extern "C"
#endif //defined(STM32H7XX) || defined(STM32G4)
#endif //HAL_NUM_CAN_IFACES