ardupilot/ArduPlane/takeoff.cpp

419 lines
17 KiB
C++

#include "Plane.h"
/* Check for automatic takeoff conditions being met using the following sequence:
* 1) Check for adequate GPS lock - if not return false
* 2) Check the gravity compensated longitudinal acceleration against the threshold and start the timer if true
* 3) Wait until the timer has reached the specified value (increments of 0.1 sec) and then check the GPS speed against the threshold
* 4) If the GPS speed is above the threshold and the attitude is within limits then return true and reset the timer
* 5) If the GPS speed and attitude within limits has not been achieved after 2.5 seconds, return false and reset the timer
* 6) If the time lapsed since the last timecheck is greater than 0.2 seconds, return false and reset the timer
* NOTE : This function relies on the TECS 50Hz processing for its acceleration measure.
*/
bool Plane::auto_takeoff_check(void)
{
// this is a more advanced check that relies on TECS
uint32_t now = millis();
uint16_t wait_time_ms = MIN(uint16_t(g.takeoff_throttle_delay)*100,12700);
// reset all takeoff state if disarmed
if (!arming.is_armed_and_safety_off()) {
memset(&takeoff_state, 0, sizeof(takeoff_state));
auto_state.baro_takeoff_alt = barometer.get_altitude();
return false;
}
// Reset states if process has been interrupted, except takeoff_direction_initialized if set
bool takeoff_dir_initialized = takeoff_state.takeoff_direction_initialized;
if (takeoff_state.last_check_ms && (now - takeoff_state.last_check_ms) > 200) {
memset(&takeoff_state, 0, sizeof(takeoff_state));
takeoff_state.takeoff_direction_initialized = takeoff_dir_initialized; //restore dir init state
return false;
}
takeoff_state.last_check_ms = now;
//check if waiting for rudder neutral after rudder arm
if (plane.arming.last_arm_method() == AP_Arming::Method::RUDDER &&
!seen_neutral_rudder) {
// we were armed with rudder but have not seen rudder neutral yet
takeoff_state.waiting_for_rudder_neutral = true;
// warn if we have been waiting a long time
if (now - takeoff_state.rudder_takeoff_warn_ms > TAKEOFF_RUDDER_WARNING_TIMEOUT) {
gcs().send_text(MAV_SEVERITY_WARNING, "Takeoff waiting for rudder release");
takeoff_state.rudder_takeoff_warn_ms = now;
}
// since we are still waiting, dont takeoff
return false;
} else {
// we did not arm by rudder or rudder has returned to neutral
// make sure we dont indicate we are in the waiting state with servo position indicator
takeoff_state.waiting_for_rudder_neutral = false;
}
// Check for bad GPS
if (gps.status() < AP_GPS::GPS_OK_FIX_3D) {
// no auto takeoff without GPS lock
return false;
}
bool do_takeoff_attitude_check = !(flight_option_enabled(FlightOptions::DISABLE_TOFF_ATTITUDE_CHK));
#if HAL_QUADPLANE_ENABLED
// disable attitude check on tailsitters
do_takeoff_attitude_check &= !quadplane.tailsitter.enabled();
#endif
if (!takeoff_state.launchTimerStarted && !is_zero(g.takeoff_throttle_min_accel)) {
// we are requiring an X acceleration event to launch
float xaccel = TECS_controller.get_VXdot();
if (g2.takeoff_throttle_accel_count <= 1) {
if (xaccel < g.takeoff_throttle_min_accel) {
goto no_launch;
}
} else {
// we need multiple accel events
if (now - takeoff_state.accel_event_ms > 500) {
takeoff_state.accel_event_counter = 0;
}
bool odd_event = ((takeoff_state.accel_event_counter & 1) != 0);
bool got_event = (odd_event?xaccel < -g.takeoff_throttle_min_accel : xaccel > g.takeoff_throttle_min_accel);
if (got_event) {
takeoff_state.accel_event_counter++;
takeoff_state.accel_event_ms = now;
}
if (takeoff_state.accel_event_counter < g2.takeoff_throttle_accel_count) {
goto no_launch;
}
}
}
// we've reached the acceleration threshold, so start the timer
if (!takeoff_state.launchTimerStarted) {
takeoff_state.launchTimerStarted = true;
takeoff_state.last_tkoff_arm_time = now;
if (now - takeoff_state.last_report_ms > 2000) {
gcs().send_text(MAV_SEVERITY_INFO, "Armed AUTO, xaccel = %.1f m/s/s, waiting %.1f sec",
(double)TECS_controller.get_VXdot(), (double)(wait_time_ms*0.001f));
takeoff_state.last_report_ms = now;
}
}
// Only perform velocity check if not timed out
if ((now - takeoff_state.last_tkoff_arm_time) > wait_time_ms+100U) {
if (now - takeoff_state.last_report_ms > 2000) {
gcs().send_text(MAV_SEVERITY_WARNING, "Timeout AUTO");
takeoff_state.last_report_ms = now;
}
goto no_launch;
}
if (do_takeoff_attitude_check) {
// Check aircraft attitude for bad launch
if (ahrs.pitch_sensor <= -3000 || ahrs.pitch_sensor >= 4500 ||
(!fly_inverted() && labs(ahrs.roll_sensor) > 3000)) {
gcs().send_text(MAV_SEVERITY_WARNING, "Bad launch AUTO");
takeoff_state.accel_event_counter = 0;
goto no_launch;
}
}
// Check ground speed and time delay
if (((gps.ground_speed() > g.takeoff_throttle_min_speed || is_zero(g.takeoff_throttle_min_speed))) &&
((now - takeoff_state.last_tkoff_arm_time) >= wait_time_ms)) {
gcs().send_text(MAV_SEVERITY_INFO, "Triggered AUTO. GPS speed = %.1f", (double)gps.ground_speed());
takeoff_state.launchTimerStarted = false;
takeoff_state.last_tkoff_arm_time = 0;
takeoff_state.start_time_ms = now;
takeoff_state.level_off_start_time_ms = 0;
takeoff_state.throttle_max_timer_ms = now;
steer_state.locked_course_err = 0; // use current heading without any error offset
return true;
}
// we're not launching yet, but the timer is still going
return false;
no_launch:
takeoff_state.launchTimerStarted = false;
takeoff_state.last_tkoff_arm_time = 0;
return false;
}
/*
calculate desired bank angle during takeoff, setting nav_roll_cd
*/
void Plane::takeoff_calc_roll(void)
{
if (steer_state.hold_course_cd == -1) {
// we don't yet have a heading to hold - just level
// the wings until we get up enough speed to get a GPS heading
nav_roll_cd = 0;
return;
}
calc_nav_roll();
// during takeoff use the level flight roll limit to prevent large
// wing strike. Slowly allow for more roll as we get higher above
// the takeoff altitude
int32_t takeoff_roll_limit_cd = roll_limit_cd;
if (auto_state.highest_airspeed < g.takeoff_rotate_speed) {
// before Vrotate (aka, on the ground)
takeoff_roll_limit_cd = g.level_roll_limit * 100;
} else {
// lim1 - below altitude TKOFF_LVL_ALT, restrict roll to LEVEL_ROLL_LIMIT
// lim2 - above altitude (TKOFF_LVL_ALT * 3) allow full flight envelope of ROLL_LIMIT_DEG
// In between lim1 and lim2 use a scaled roll limit.
// The *3 scheme should scale reasonably with both small and large aircraft
const float lim1 = MAX(mode_takeoff.level_alt, 0);
const float lim2 = MIN(mode_takeoff.level_alt*3, mode_takeoff.target_alt);
const float current_baro_alt = barometer.get_altitude();
takeoff_roll_limit_cd = linear_interpolate(g.level_roll_limit*100, roll_limit_cd,
current_baro_alt,
auto_state.baro_takeoff_alt+lim1, auto_state.baro_takeoff_alt+lim2);
}
nav_roll_cd = constrain_int32(nav_roll_cd, -takeoff_roll_limit_cd, takeoff_roll_limit_cd);
}
/*
calculate desired pitch angle during takeoff, setting nav_pitch_cd
*/
void Plane::takeoff_calc_pitch(void)
{
// First see if TKOFF_ROTATE_SPD applies.
// This will set the pitch for the first portion of the takeoff, up until cruise speed is reached.
if (g.takeoff_rotate_speed > 0) {
// A non-zero rotate speed is recommended for ground takeoffs.
if (auto_state.highest_airspeed < g.takeoff_rotate_speed) {
// We have not reached rotate speed, use the specified takeoff target pitch angle.
nav_pitch_cd = int32_t(100.0f * mode_takeoff.ground_pitch);
TECS_controller.set_pitch_min(0.01f*nav_pitch_cd);
TECS_controller.set_pitch_max(0.01f*nav_pitch_cd);
return;
} else if (gps.ground_speed() <= (float)aparm.airspeed_cruise) {
// If rotate speed applied, gradually transition from TKOFF_GND_PITCH to the climb angle.
// This is recommended for ground takeoffs, so delay rotation until ground speed indicates adequate airspeed.
const uint16_t min_pitch_cd = 500; // Set a minimum of 5 deg climb angle.
nav_pitch_cd = (gps.ground_speed() / (float)aparm.airspeed_cruise) * auto_state.takeoff_pitch_cd;
nav_pitch_cd = constrain_int32(nav_pitch_cd, min_pitch_cd, auto_state.takeoff_pitch_cd);
TECS_controller.set_pitch_min(0.01f*nav_pitch_cd);
TECS_controller.set_pitch_max(0.01f*nav_pitch_cd);
return;
}
}
// We are now past the rotation.
// Initialize pitch limits for TECS.
int16_t pitch_min_cd = get_takeoff_pitch_min_cd();
bool pitch_clipped_max = false;
// If we're using an airspeed sensor, we consult TECS.
if (ahrs.using_airspeed_sensor()) {
calc_nav_pitch();
// At any rate, we don't want to go lower than the minimum pitch bound.
if (nav_pitch_cd < pitch_min_cd) {
nav_pitch_cd = pitch_min_cd;
}
} else {
// If not, we will use the minimum allowed angle.
nav_pitch_cd = pitch_min_cd;
pitch_clipped_max = true;
}
// Check if we have trouble with roll control.
if (aparm.stall_prevention != 0) {
// during takeoff we want to prioritise roll control over
// pitch. Apply a reduction in pitch demand if our roll is
// significantly off. The aim of this change is to
// increase the robustness of hand launches, particularly
// in cross-winds. If we start to roll over then we reduce
// pitch demand until the roll recovers
float roll_error_rad = radians(constrain_float(labs(nav_roll_cd - ahrs.roll_sensor) * 0.01, 0, 90));
float reduction = sq(cosf(roll_error_rad));
nav_pitch_cd *= reduction;
if (nav_pitch_cd < pitch_min_cd) {
pitch_min_cd = nav_pitch_cd;
}
}
// Notify TECS about the external pitch setting, for the next iteration.
TECS_controller.set_pitch_min(0.01f*pitch_min_cd);
if (pitch_clipped_max) {TECS_controller.set_pitch_max(0.01f*nav_pitch_cd);}
}
/*
* Calculate the throttle limits to run at during a takeoff.
* These limits are meant to be used exclusively by Plane::apply_throttle_limits().
*/
void Plane::takeoff_calc_throttle() {
// Initialize the maximum throttle limit.
if (aparm.takeoff_throttle_max != 0) {
takeoff_state.throttle_lim_max = aparm.takeoff_throttle_max;
} else {
takeoff_state.throttle_lim_max = aparm.throttle_max;
}
// Initialize the minimum throttle limit.
if (aparm.takeoff_throttle_min != 0) {
takeoff_state.throttle_lim_min = aparm.takeoff_throttle_min;
} else {
takeoff_state.throttle_lim_min = aparm.throttle_cruise;
}
// Raise min to force max throttle for TKOFF_THR_MAX_T after a takeoff.
// It only applies if the timer has been started externally.
if (takeoff_state.throttle_max_timer_ms != 0) {
const uint32_t dt = AP_HAL::millis() - takeoff_state.throttle_max_timer_ms;
if (dt*0.001 < aparm.takeoff_throttle_max_t) {
takeoff_state.throttle_lim_min = takeoff_state.throttle_lim_max;
} else {
// Reset the timer for future use.
takeoff_state.throttle_max_timer_ms = 0;
}
}
// Enact the TKOFF_OPTIONS logic.
const float current_baro_alt = barometer.get_altitude();
const bool below_lvl_alt = current_baro_alt < auto_state.baro_takeoff_alt + mode_takeoff.level_alt;
// Set the minimum throttle limit.
const bool use_throttle_range = (aparm.takeoff_options & (uint32_t)AP_FixedWing::TakeoffOption::THROTTLE_RANGE);
if (!use_throttle_range // We don't want to employ a throttle range.
|| !ahrs.using_airspeed_sensor() // We don't have an airspeed sensor.
|| below_lvl_alt // We are below TKOFF_LVL_ALT.
) { // Traditional takeoff throttle limit.
takeoff_state.throttle_lim_min = takeoff_state.throttle_lim_max;
}
calc_throttle();
}
/* get the pitch min used during takeoff. This matches the mission pitch until near the end where it allows it to levels off
*/
int16_t Plane::get_takeoff_pitch_min_cd(void)
{
if (flight_stage != AP_FixedWing::FlightStage::TAKEOFF) {
return auto_state.takeoff_pitch_cd;
}
int32_t relative_alt_cm = adjusted_relative_altitude_cm();
int32_t remaining_height_to_target_cm = (auto_state.takeoff_altitude_rel_cm - relative_alt_cm);
// seconds to target alt method
if (g.takeoff_pitch_limit_reduction_sec > 0) {
// if height-below-target has been initialized then use it to create and apply a scaler to the pitch_min
if (auto_state.height_below_takeoff_to_level_off_cm != 0) {
float scalar = remaining_height_to_target_cm / (float)auto_state.height_below_takeoff_to_level_off_cm;
return auto_state.takeoff_pitch_cd * scalar;
}
// are we entering the region where we want to start levelling off before we reach takeoff alt?
if (auto_state.sink_rate < -0.1f) {
float sec_to_target = (remaining_height_to_target_cm * 0.01f) / (-auto_state.sink_rate);
if (sec_to_target > 0 &&
relative_alt_cm >= 1000 &&
sec_to_target <= g.takeoff_pitch_limit_reduction_sec) {
// make a note of that altitude to use it as a start height for scaling
gcs().send_text(MAV_SEVERITY_INFO, "Takeoff level-off starting at %dm", int(remaining_height_to_target_cm/100));
auto_state.height_below_takeoff_to_level_off_cm = remaining_height_to_target_cm;
takeoff_state.level_off_start_time_ms = AP_HAL::millis();
}
}
}
return auto_state.takeoff_pitch_cd;
}
/*
return a tail hold percentage during initial takeoff for a tail
dragger
This can be used either in auto-takeoff or in FBWA mode with
FBWA_TDRAG_CHAN enabled
*/
int8_t Plane::takeoff_tail_hold(void)
{
bool in_takeoff = ((plane.flight_stage == AP_FixedWing::FlightStage::TAKEOFF) ||
(control_mode == &mode_fbwa && auto_state.fbwa_tdrag_takeoff_mode));
if (!in_takeoff) {
// not in takeoff
return 0;
}
if (g.takeoff_tdrag_elevator == 0) {
// no takeoff elevator set
goto return_zero;
}
if (auto_state.highest_airspeed >= g.takeoff_tdrag_speed1) {
// we've passed speed1. We now raise the tail and aim for
// level pitch. Return 0 meaning no fixed elevator setting
goto return_zero;
}
if (ahrs.pitch_sensor > auto_state.initial_pitch_cd + 1000) {
// the pitch has gone up by more then 10 degrees over the
// initial pitch. This may mean the nose is coming up for an
// early liftoff, perhaps due to a bad setting of
// g.takeoff_tdrag_speed1. Go to level flight to prevent a
// stall
goto return_zero;
}
// we are holding the tail down
return g.takeoff_tdrag_elevator;
return_zero:
if (auto_state.fbwa_tdrag_takeoff_mode) {
gcs().send_text(MAV_SEVERITY_NOTICE, "FBWA tdrag off");
auto_state.fbwa_tdrag_takeoff_mode = false;
}
return 0;
}
#if AP_LANDINGGEAR_ENABLED
/*
update landing gear
*/
void Plane::landing_gear_update(void)
{
g2.landing_gear.update(relative_ground_altitude(g.rangefinder_landing));
}
#endif
/*
check takeoff_timeout; checks time after the takeoff start time; returns true if timeout has occurred
*/
bool Plane::check_takeoff_timeout(void)
{
if (takeoff_state.start_time_ms != 0 && g2.takeoff_timeout > 0) {
const float ground_speed = AP::gps().ground_speed();
const float takeoff_min_ground_speed = 4;
if (ground_speed >= takeoff_min_ground_speed) {
takeoff_state.start_time_ms = 0;
return false;
} else {
uint32_t now = AP_HAL::millis();
if (now - takeoff_state.start_time_ms > (uint32_t)(1000U * g2.takeoff_timeout)) {
gcs().send_text(MAV_SEVERITY_INFO, "Takeoff timeout: %.1f m/s speed < 4m/s", ground_speed);
arming.disarm(AP_Arming::Method::TAKEOFFTIMEOUT);
takeoff_state.start_time_ms = 0;
return true;
}
}
}
return false;
}
/*
check if the pitch level-off time has expired; returns true if timeout has occurred
*/
bool Plane::check_takeoff_timeout_level_off(void)
{
if (takeoff_state.level_off_start_time_ms > 0) {
// A takeoff is in progress.
uint32_t now = AP_HAL::millis();
if ((now - takeoff_state.level_off_start_time_ms) > (uint32_t)(1000U * g.takeoff_pitch_limit_reduction_sec)) {
return true;
}
}
return false;
}