ardupilot/ArduPlane/tailsitter.cpp
Andrew Tridgell c061d5615b Plane: added manual input mask for tailsitter prop-hang
This adds new parameters Q_TAILSIT_MASK and Q_TAILSIT_MASKCH. These
parameters allow a user to use the tailsitter capabilities of a 3D
plane to teach themselves to prop-hang.

It works by allowing the user to setup a switch on their transmitter
to enable manual pass-thru of a set of the input channels to outputs
when in tailsitter hover. The user can then use that switch to allow
learning of hover control in a 3D plane one channel (or two channels)
at a time.
2017-02-26 09:20:13 +11:00

103 lines
3.3 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
control code for tailsitters. Enabled by setting Q_FRAME_CLASS=10
*/
#include "Plane.h"
/*
return true when flying a tailsitter
*/
bool QuadPlane::is_tailsitter(void)
{
return available() && frame_class == AP_Motors::MOTOR_FRAME_TAILSITTER;
}
/*
check if we are flying as a tailsitter
*/
bool QuadPlane::tailsitter_active(void)
{
return is_tailsitter() && in_vtol_mode();
}
/*
run output for tailsitters
*/
void QuadPlane::tailsitter_output(void)
{
if (!tailsitter_active()) {
return;
}
motors_output();
plane.pitchController.reset_I();
plane.rollController.reset_I();
if (tailsitter.input_mask_chan > 0 &&
tailsitter.input_mask > 0 &&
hal.rcin->read(tailsitter.input_mask_chan-1) > 1700) {
// the user is learning to prop-hang
if (tailsitter.input_mask & TAILSITTER_MASK_AILERON) {
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.channel_roll->get_control_in_zero_dz());
}
if (tailsitter.input_mask & TAILSITTER_MASK_ELEVATOR) {
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, plane.channel_pitch->get_control_in_zero_dz());
}
if (tailsitter.input_mask & TAILSITTER_MASK_THROTTLE) {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.channel_throttle->get_control_in_zero_dz());
}
if (tailsitter.input_mask & TAILSITTER_MASK_RUDDER) {
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, plane.channel_rudder->get_control_in_zero_dz());
}
}
}
/*
return true when we have completed enough of a transition to switch to fixed wing control
*/
bool QuadPlane::tailsitter_transition_complete(void)
{
if (plane.fly_inverted()) {
// transition immediately
return true;
}
if (labs(ahrs_view->pitch_sensor) > tailsitter.transition_angle*100 ||
labs(ahrs_view->roll_sensor) > tailsitter.transition_angle*100 ||
AP_HAL::millis() - transition_start_ms > 2000) {
return true;
}
// still waiting
return false;
}
// handle different tailsitter input types
void QuadPlane::tailsitter_check_input(void)
{
if (tailsitter_active() &&
tailsitter.input_type == TAILSITTER_INPUT_PLANE) {
// the user has asked for body frame controls when tailsitter
// is active. We switch around the control_in value for the
// channels to do this, as that ensures the value is
// consistent throughout the code
int16_t roll_in = plane.channel_roll->get_control_in();
int16_t yaw_in = plane.channel_rudder->get_control_in();
plane.channel_roll->set_control_in(yaw_in);
plane.channel_rudder->set_control_in(-roll_in);
}
}