mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-02 14:13:42 -04:00
6af0dcfed0
The template system doesn't work across 32/64 bit builds (SITL vs fmuv4), probably because int is typedef'd to int64
261 lines
6.7 KiB
C++
261 lines
6.7 KiB
C++
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <stdint.h>
|
|
#include <type_traits>
|
|
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_Param/AP_Param.h>
|
|
|
|
#include "definitions.h"
|
|
#include "edc.h"
|
|
#include "location.h"
|
|
#include "matrix3.h"
|
|
#include "polygon.h"
|
|
#include "quaternion.h"
|
|
#include "rotations.h"
|
|
#include "vector2.h"
|
|
#include "vector3.h"
|
|
#include "spline5.h"
|
|
|
|
// define AP_Param types AP_Vector3f and Ap_Matrix3f
|
|
AP_PARAMDEFV(Vector3f, Vector3f, AP_PARAM_VECTOR3F);
|
|
|
|
/*
|
|
* Check whether two floats are equal
|
|
*/
|
|
template <typename Arithmetic1, typename Arithmetic2>
|
|
typename std::enable_if<std::is_integral<typename std::common_type<Arithmetic1, Arithmetic2>::type>::value ,bool>::type
|
|
is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2);
|
|
|
|
template <typename Arithmetic1, typename Arithmetic2>
|
|
typename std::enable_if<std::is_floating_point<typename std::common_type<Arithmetic1, Arithmetic2>::type>::value, bool>::type
|
|
is_equal(const Arithmetic1 v_1, const Arithmetic2 v_2);
|
|
|
|
/*
|
|
* @brief: Check whether a float is zero
|
|
*/
|
|
template <typename T>
|
|
inline bool is_zero(const T fVal1) {
|
|
static_assert(std::is_floating_point<T>::value || std::is_base_of<T,AP_Float>::value,
|
|
"Template parameter not of type float");
|
|
return (fabsf(static_cast<float>(fVal1)) < FLT_EPSILON);
|
|
}
|
|
|
|
/*
|
|
* @brief: Check whether a float is greater than zero
|
|
*/
|
|
template <typename T>
|
|
inline bool is_positive(const T fVal1) {
|
|
static_assert(std::is_floating_point<T>::value || std::is_base_of<T,AP_Float>::value,
|
|
"Template parameter not of type float");
|
|
return (static_cast<float>(fVal1) >= FLT_EPSILON);
|
|
}
|
|
|
|
|
|
/*
|
|
* @brief: Check whether a float is less than zero
|
|
*/
|
|
template <typename T>
|
|
inline bool is_negative(const T fVal1) {
|
|
static_assert(std::is_floating_point<T>::value || std::is_base_of<T,AP_Float>::value,
|
|
"Template parameter not of type float");
|
|
return (static_cast<float>(fVal1) <= (-1.0 * FLT_EPSILON));
|
|
}
|
|
|
|
|
|
/*
|
|
* A variant of asin() that checks the input ranges and ensures a valid angle
|
|
* as output. If nan is given as input then zero is returned.
|
|
*/
|
|
template <typename T>
|
|
float safe_asin(const T v);
|
|
|
|
/*
|
|
* A variant of sqrt() that checks the input ranges and ensures a valid value
|
|
* as output. If a negative number is given then 0 is returned. The reasoning
|
|
* is that a negative number for sqrt() in our code is usually caused by small
|
|
* numerical rounding errors, so the real input should have been zero
|
|
*/
|
|
template <typename T>
|
|
float safe_sqrt(const T v);
|
|
|
|
// invOut is an inverted 4x4 matrix when returns true, otherwise matrix is Singular
|
|
bool inverse3x3(float m[], float invOut[]);
|
|
|
|
// invOut is an inverted 3x3 matrix when returns true, otherwise matrix is Singular
|
|
bool inverse4x4(float m[],float invOut[]);
|
|
|
|
// matrix multiplication of two NxN matrices
|
|
float *mat_mul(float *A, float *B, uint8_t n);
|
|
|
|
// matrix algebra
|
|
bool inverse(float x[], float y[], uint16_t dim);
|
|
|
|
/*
|
|
* Constrain an angle to be within the range: -180 to 180 degrees. The second
|
|
* parameter changes the units. Default: 1 == degrees, 10 == dezi,
|
|
* 100 == centi.
|
|
*/
|
|
template <typename T>
|
|
float wrap_180(const T angle, float unit_mod = 1);
|
|
|
|
/*
|
|
* Wrap an angle in centi-degrees. See wrap_180().
|
|
*/
|
|
template <typename T>
|
|
auto wrap_180_cd(const T angle) -> decltype(wrap_180(angle, 100.f));
|
|
|
|
/*
|
|
* Constrain an euler angle to be within the range: 0 to 360 degrees. The
|
|
* second parameter changes the units. Default: 1 == degrees, 10 == dezi,
|
|
* 100 == centi.
|
|
*/
|
|
template <typename T>
|
|
float wrap_360(const T angle, float unit_mod = 1);
|
|
|
|
/*
|
|
* Wrap an angle in centi-degrees. See wrap_360().
|
|
*/
|
|
template <typename T>
|
|
auto wrap_360_cd(const T angle) -> decltype(wrap_360(angle, 100.f));
|
|
|
|
/*
|
|
wrap an angle in radians to -PI ~ PI (equivalent to +- 180 degrees)
|
|
*/
|
|
template <typename T>
|
|
float wrap_PI(const T radian);
|
|
|
|
/*
|
|
* wrap an angle in radians to 0..2PI
|
|
*/
|
|
template <typename T>
|
|
float wrap_2PI(const T radian);
|
|
|
|
/*
|
|
* Constrain a value to be within the range: low and high
|
|
*/
|
|
template <typename T>
|
|
T constrain_value(const T amt, const T low, const T high);
|
|
|
|
inline float constrain_float(const float amt, const float low, const float high)
|
|
{
|
|
return constrain_value(amt, low, high);
|
|
}
|
|
|
|
inline int16_t constrain_int16(const int16_t amt, const int16_t low, const int16_t high)
|
|
{
|
|
return constrain_value(amt, low, high);
|
|
}
|
|
|
|
inline int32_t constrain_int32(const int32_t amt, const int32_t low, const int32_t high)
|
|
{
|
|
return constrain_value(amt, low, high);
|
|
}
|
|
|
|
inline int64_t constrain_int64(const int64_t amt, const int64_t low, const int64_t high)
|
|
{
|
|
return constrain_value(amt, low, high);
|
|
}
|
|
|
|
// degrees -> radians
|
|
static inline constexpr float radians(float deg)
|
|
{
|
|
return deg * DEG_TO_RAD;
|
|
}
|
|
|
|
// radians -> degrees
|
|
static inline constexpr float degrees(float rad)
|
|
{
|
|
return rad * RAD_TO_DEG;
|
|
}
|
|
|
|
template<typename T>
|
|
float sq(const T val)
|
|
{
|
|
return powf(static_cast<float>(val), 2);
|
|
}
|
|
|
|
/*
|
|
* Variadic template for calculating the square norm of a vector of any
|
|
* dimension.
|
|
*/
|
|
template<typename T, typename... Params>
|
|
float sq(const T first, const Params... parameters)
|
|
{
|
|
return sq(first) + sq(parameters...);
|
|
}
|
|
|
|
/*
|
|
* Variadic template for calculating the norm (pythagoras) of a vector of any
|
|
* dimension.
|
|
*/
|
|
template<typename T, typename U, typename... Params>
|
|
float norm(const T first, const U second, const Params... parameters)
|
|
{
|
|
return sqrtf(sq(first, second, parameters...));
|
|
}
|
|
|
|
template<typename A, typename B>
|
|
static inline auto MIN(const A &one, const B &two) -> decltype(one < two ? one : two)
|
|
{
|
|
return one < two ? one : two;
|
|
}
|
|
|
|
template<typename A, typename B>
|
|
static inline auto MAX(const A &one, const B &two) -> decltype(one > two ? one : two)
|
|
{
|
|
return one > two ? one : two;
|
|
}
|
|
|
|
inline uint32_t hz_to_nsec(uint32_t freq)
|
|
{
|
|
return AP_NSEC_PER_SEC / freq;
|
|
}
|
|
|
|
inline uint32_t nsec_to_hz(uint32_t nsec)
|
|
{
|
|
return AP_NSEC_PER_SEC / nsec;
|
|
}
|
|
|
|
inline uint32_t usec_to_nsec(uint32_t usec)
|
|
{
|
|
return usec * AP_NSEC_PER_USEC;
|
|
}
|
|
|
|
inline uint32_t nsec_to_usec(uint32_t nsec)
|
|
{
|
|
return nsec / AP_NSEC_PER_USEC;
|
|
}
|
|
|
|
inline uint32_t hz_to_usec(uint32_t freq)
|
|
{
|
|
return AP_USEC_PER_SEC / freq;
|
|
}
|
|
|
|
inline uint32_t usec_to_hz(uint32_t usec)
|
|
{
|
|
return AP_USEC_PER_SEC / usec;
|
|
}
|
|
|
|
/*
|
|
linear interpolation based on a variable in a range
|
|
*/
|
|
float linear_interpolate(float low_output, float high_output,
|
|
float var_value,
|
|
float var_low, float var_high);
|
|
|
|
/* simple 16 bit random number generator */
|
|
uint16_t get_random16(void);
|
|
|
|
// generate a random float between -1 and 1, for use in SITL
|
|
float rand_float(void);
|
|
|
|
// generate a random Vector3f of size 1
|
|
Vector3f rand_vec3f(void);
|
|
|
|
// confirm a value is a valid octal value
|
|
bool is_valid_octal(uint16_t octal);
|
|
|