ardupilot/libraries/AP_HAL_SITL/Scheduler.cpp
Andrew Tridgell 10e9182c21 HAL_SITL: fixed delay() for SITL threads
with the new thread_create() interface we need to handle delays a bit
differently
2018-07-12 15:04:43 +10:00

239 lines
5.5 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include "AP_HAL_SITL.h"
#include "Scheduler.h"
#include "UARTDriver.h"
#include <sys/time.h>
#include <fenv.h>
#include <pthread.h>
using namespace HALSITL;
extern const AP_HAL::HAL& hal;
AP_HAL::Proc Scheduler::_failsafe = nullptr;
AP_HAL::MemberProc Scheduler::_timer_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr};
uint8_t Scheduler::_num_timer_procs = 0;
bool Scheduler::_in_timer_proc = false;
AP_HAL::MemberProc Scheduler::_io_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr};
uint8_t Scheduler::_num_io_procs = 0;
bool Scheduler::_in_io_proc = false;
bool Scheduler::_should_reboot = false;
Scheduler::Scheduler(SITL_State *sitlState) :
_sitlState(sitlState),
_stopped_clock_usec(0)
{
}
void Scheduler::init()
{
_main_ctx = pthread_self();
}
bool Scheduler::in_main_thread() const
{
if (!_in_timer_proc && !_in_io_proc && pthread_self() == _main_ctx) {
return true;
}
return false;
}
void Scheduler::delay_microseconds(uint16_t usec)
{
uint64_t start = AP_HAL::micros64();
do {
uint64_t dtime = AP_HAL::micros64() - start;
if (dtime >= usec) {
break;
}
_sitlState->wait_clock(start + usec);
} while (true);
}
void Scheduler::delay(uint16_t ms)
{
uint32_t start = AP_HAL::millis();
uint32_t now = start;
do {
delay_microseconds(1000);
if (_min_delay_cb_ms <= (ms - (now - start))) {
if (in_main_thread()) {
call_delay_cb();
}
}
now = AP_HAL::millis();
} while (now - start < ms);
}
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
}
}
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
}
}
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void Scheduler::system_initialized() {
if (_initialized) {
AP_HAL::panic(
"PANIC: scheduler system initialized called more than once");
}
int exceptions = FE_OVERFLOW | FE_DIVBYZERO;
#ifndef __i386__
// i386 with gcc doesn't work with FE_INVALID
exceptions |= FE_INVALID;
#endif
if (_sitlState->_sitl == nullptr || _sitlState->_sitl->float_exception) {
feenableexcept(exceptions);
} else {
feclearexcept(exceptions);
}
_initialized = true;
}
void Scheduler::sitl_end_atomic() {
if (_nested_atomic_ctr == 0) {
hal.uartA->printf("NESTED ATOMIC ERROR\n");
} else {
_nested_atomic_ctr--;
}
}
void Scheduler::reboot(bool hold_in_bootloader)
{
_should_reboot = true;
}
void Scheduler::_run_timer_procs()
{
if (_in_timer_proc) {
// the timer calls took longer than the period of the
// timer. This is bad, and may indicate a serious
// driver failure. We can't just call the drivers
// again, as we could run out of stack. So we only
// call the _failsafe call. It's job is to detect if
// the drivers or the main loop are indeed dead and to
// activate whatever failsafe it thinks may help if
// need be. We assume the failsafe code can't
// block. If it does then we will recurse and die when
// we run out of stack
if (_failsafe != nullptr) {
_failsafe();
}
return;
}
_in_timer_proc = true;
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
_in_timer_proc = false;
}
void Scheduler::_run_io_procs()
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
_in_io_proc = false;
hal.uartA->_timer_tick();
hal.uartB->_timer_tick();
hal.uartC->_timer_tick();
hal.uartD->_timer_tick();
hal.uartE->_timer_tick();
hal.uartF->_timer_tick();
hal.uartG->_timer_tick();
}
/*
set simulation timestamp
*/
void Scheduler::stop_clock(uint64_t time_usec)
{
_stopped_clock_usec = time_usec;
if (time_usec - _last_io_run > 10000) {
_last_io_run = time_usec;
_run_io_procs();
}
}
/*
trampoline for thread create
*/
void *Scheduler::thread_create_trampoline(void *ctx)
{
AP_HAL::MemberProc *t = (AP_HAL::MemberProc *)ctx;
(*t)();
free(t);
return nullptr;
}
/*
create a new thread
*/
bool Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority)
{
// take a copy of the MemberProc, it is freed after thread exits
AP_HAL::MemberProc *tproc = (AP_HAL::MemberProc *)malloc(sizeof(proc));
if (!tproc) {
return false;
}
*tproc = proc;
pthread_t thread {};
if (pthread_create(&thread, NULL, thread_create_trampoline, tproc) != 0) {
free(tproc);
return false;
}
return true;
}