ardupilot/libraries/AP_HAL_PX4/RCOutput.cpp
2018-06-09 22:46:48 -07:00

667 lines
20 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "RCOutput.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_pwm_output.h>
#include <drivers/drv_hrt.h>
#include <drivers/drv_pwm_output.h>
#include <drivers/drv_sbus.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
extern const AP_HAL::HAL& hal;
using namespace PX4;
/*
enable RCOUT_DEBUG_LATENCY to measure output latency using a logic
analyser. AUX6 will go high during the cork/push output.
*/
#define RCOUT_DEBUG_LATENCY 0
void PX4RCOutput::init()
{
_perf_rcout = perf_alloc(PC_ELAPSED, "APM_rcout");
_pwm_fd = open(PWM_OUTPUT0_DEVICE_PATH, O_RDWR);
if (_pwm_fd == -1) {
AP_HAL::panic("Unable to open " PWM_OUTPUT0_DEVICE_PATH);
}
if (ioctl(_pwm_fd, PWM_SERVO_ARM, 0) != 0) {
hal.console->printf("RCOutput: Unable to setup IO arming\n");
}
if (ioctl(_pwm_fd, PWM_SERVO_SET_ARM_OK, 0) != 0) {
hal.console->printf("RCOutput: Unable to setup IO arming OK\n");
}
_rate_mask_main = 0;
_rate_mask_alt = 0;
_alt_fd = -1;
_servo_count = 0;
_alt_servo_count = 0;
if (ioctl(_pwm_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_servo_count) != 0) {
hal.console->printf("RCOutput: Unable to get servo count\n");
return;
}
for (uint8_t i=0; i<ORB_MULTI_MAX_INSTANCES; i++) {
_outputs[i].pwm_sub = orb_subscribe_multi(ORB_ID(actuator_outputs), i);
}
#if !defined(CONFIG_ARCH_BOARD_PX4FMU_V4)
struct stat st;
// don't try and open px4fmu unless there is a px4io. Otherwise we
// can end up opening the same device twice
if (stat("/dev/px4io", &st) == 0) {
_alt_fd = open("/dev/px4fmu", O_RDWR);
if (_alt_fd == -1) {
hal.console->printf("RCOutput: failed to open /dev/px4fmu");
}
}
#endif
// ensure not to write zeros to disabled channels
for (uint8_t i=0; i < PX4_NUM_OUTPUT_CHANNELS; i++) {
_period[i] = PWM_IGNORE_THIS_CHANNEL;
_last_sent[i] = PWM_IGNORE_THIS_CHANNEL;
}
}
void PX4RCOutput::_init_alt_channels(void)
{
if (_alt_fd == -1) {
return;
}
if (ioctl(_alt_fd, PWM_SERVO_ARM, 0) != 0) {
hal.console->printf("RCOutput: Unable to setup alt IO arming\n");
return;
}
if (ioctl(_alt_fd, PWM_SERVO_SET_ARM_OK, 0) != 0) {
hal.console->printf("RCOutput: Unable to setup alt IO arming OK\n");
return;
}
if (ioctl(_alt_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_alt_servo_count) != 0) {
hal.console->printf("RCOutput: Unable to get servo count\n");
}
}
/*
set output frequency on outputs associated with fd
*/
void PX4RCOutput::set_freq_fd(int fd, uint32_t chmask, uint16_t freq_hz, uint32_t &rate_mask)
{
if (_output_mode == MODE_PWM_BRUSHED) {
freq_hz /= 8; // divide by 8 for 8MHz clock
// remember max period
_period_max = 1000000UL/freq_hz;
}
// we can't set this per channel
if (freq_hz > 50 || freq_hz == 1) {
// we're being asked to set the alt rate
if (_output_mode == MODE_PWM_ONESHOT || _output_mode == MODE_PWM_ONESHOT125) {
/*
set a 1Hz update for oneshot. This periodic output will
never actually trigger, instead we will directly trigger
the pulse after each push()
*/
freq_hz = 1;
}
//::printf("SET_UPDATE_RATE %d %u\n", fd, (unsigned)freq_hz);
if (ioctl(fd, PWM_SERVO_SET_UPDATE_RATE, (unsigned long)freq_hz) != 0) {
hal.console->printf("RCOutput: Unable to set alt rate to %uHz\n", (unsigned)freq_hz);
return;
}
_freq_hz = freq_hz;
}
/* work out the new rate mask. The outputs have 3 groups of servos.
Group 0: channels 0 1
Group 1: channels 4 5 6 7
Group 2: channels 2 3
Channels within a group must be set to the same rate.
For the moment we never set the channels above 8 to more than
50Hz
*/
if (freq_hz > 50 || freq_hz == 1) {
// we are setting high rates on the given channels
rate_mask |= chmask & 0xFF;
if (rate_mask & 0x3) {
rate_mask |= 0x3;
}
if (rate_mask & 0xc) {
rate_mask |= 0xc;
}
if (rate_mask & 0xF0) {
rate_mask |= 0xF0;
}
} else {
// we are setting low rates on the given channels
if (chmask & 0x3) {
rate_mask &= ~0x3;
}
if (chmask & 0xc) {
rate_mask &= ~0xc;
}
if (chmask & 0xf0) {
rate_mask &= ~0xf0;
}
}
if (ioctl(fd, PWM_SERVO_SET_SELECT_UPDATE_RATE, rate_mask) != 0) {
hal.console->printf("RCOutput: Unable to set alt rate mask to 0x%x\n", (unsigned)rate_mask);
}
if (_output_mode == MODE_PWM_BRUSHED) {
ioctl(fd, PWM_SERVO_SET_UPDATE_CLOCK, 8);
}
}
/*
set output frequency
*/
void PX4RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
if (freq_hz > 50 && (_output_mode == MODE_PWM_ONESHOT || _output_mode == MODE_PWM_ONESHOT125)) {
// rate is irrelevent in oneshot
return;
}
// re-fetch servo count as it might have changed due to a change in BRD_PWM_COUNT
if (_pwm_fd != -1 && ioctl(_pwm_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_servo_count) != 0) {
hal.console->printf("RCOutput: Unable to get servo count\n");
return;
}
// greater than 400 doesn't give enough room at higher periods for
// the down pulse
if (freq_hz > 400 && _output_mode != MODE_PWM_BRUSHED) {
freq_hz = 400;
}
uint32_t primary_mask = chmask & ((1UL<<_servo_count)-1);
uint32_t alt_mask = chmask >> _servo_count;
if (primary_mask && _pwm_fd != -1) {
set_freq_fd(_pwm_fd, primary_mask, freq_hz, _rate_mask_main);
}
if (alt_mask && _alt_fd != -1) {
set_freq_fd(_alt_fd, alt_mask, freq_hz, _rate_mask_alt);
}
}
uint16_t PX4RCOutput::get_freq(uint8_t ch)
{
if (ch < _servo_count) {
if (_rate_mask_main & (1U<<ch)) {
return _freq_hz;
}
} else if (_alt_fd != -1) {
if (_rate_mask_alt & (1U<<(ch-_servo_count))) {
return _freq_hz;
}
}
return 50;
}
void PX4RCOutput::enable_ch(uint8_t ch)
{
if (ch >= PX4_NUM_OUTPUT_CHANNELS) {
return;
}
if (ch >= 8 && !(_enabled_channels & (1U<<ch))) {
// this is the first enable of an auxiliary channel - setup
// aux channels now. This delayed setup makes it possible to
// use BRD_PWM_COUNT to setup the number of PWM channels.
_init_alt_channels();
}
_enabled_channels |= (1U<<ch);
if (_period[ch] == PWM_IGNORE_THIS_CHANNEL) {
_period[ch] = 0;
_last_sent[ch] = 0;
}
}
void PX4RCOutput::disable_ch(uint8_t ch)
{
if (ch >= PX4_NUM_OUTPUT_CHANNELS) {
return;
}
_enabled_channels &= ~(1U<<ch);
_period[ch] = PWM_IGNORE_THIS_CHANNEL;
}
void PX4RCOutput::set_safety_pwm(uint32_t chmask, uint16_t period_us)
{
struct pwm_output_values pwm_values;
memset(&pwm_values, 0, sizeof(pwm_values));
for (uint8_t i=0; i<_servo_count; i++) {
if ((1UL<<i) & chmask) {
pwm_values.values[i] = period_us;
}
pwm_values.channel_count++;
}
int ret = ioctl(_pwm_fd, PWM_SERVO_SET_DISARMED_PWM, (long unsigned int)&pwm_values);
if (ret != OK) {
hal.console->printf("Failed to setup disarmed PWM for 0x%08x to %u\n", (unsigned)chmask, period_us);
}
}
void PX4RCOutput::set_failsafe_pwm(uint32_t chmask, uint16_t period_us)
{
struct pwm_output_values pwm_values;
memset(&pwm_values, 0, sizeof(pwm_values));
for (uint8_t i=0; i<_servo_count; i++) {
if ((1UL<<i) & chmask) {
pwm_values.values[i] = period_us;
}
pwm_values.channel_count++;
}
int ret = ioctl(_pwm_fd, PWM_SERVO_SET_FAILSAFE_PWM, (long unsigned int)&pwm_values);
if (ret != OK) {
hal.console->printf("Failed to setup failsafe PWM for 0x%08x to %u\n", (unsigned)chmask, period_us);
}
}
bool PX4RCOutput::force_safety_on(void)
{
_safety_state_request = AP_HAL::Util::SAFETY_DISARMED;
_safety_state_request_last_ms = 1;
return true;
}
void PX4RCOutput::force_safety_off(void)
{
_safety_state_request = AP_HAL::Util::SAFETY_ARMED;
_safety_state_request_last_ms = 1;
}
void PX4RCOutput::force_safety_pending_requests(void)
{
// check if there is a pending saftey_state change. If so (timer != 0) then set it.
uint32_t now = AP_HAL::millis();
if (_safety_state_request_last_ms != 0 &&
now - _safety_state_request_last_ms >= 100) {
if (hal.util->safety_switch_state() == _safety_state_request &&
_safety_state_request_last_ms != 1) {
_safety_state_request_last_ms = 0;
} else if (_safety_state_request == AP_HAL::Util::SAFETY_DISARMED) {
// current != requested, set it
ioctl(_pwm_fd, PWM_SERVO_SET_FORCE_SAFETY_ON, 0);
_safety_state_request_last_ms = now;
} else if (_safety_state_request == AP_HAL::Util::SAFETY_ARMED) {
// current != requested, set it
ioctl(_pwm_fd, PWM_SERVO_SET_FORCE_SAFETY_OFF, 0);
_safety_state_request_last_ms = now;
}
}
// also update safety button options if needed
if (now - _last_safety_options_check_ms > 1000) {
_last_safety_options_check_ms = now;
AP_BoardConfig *boardconfig = AP_BoardConfig::get_instance();
if (boardconfig) {
uint16_t desired_options = 0;
uint16_t options = boardconfig->get_safety_button_options();
if (!(options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_OFF)) {
desired_options |= PWM_SERVO_SET_SAFETY_OPTION_DISABLE_BUTTON_OFF;
}
if (!(options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON)) {
desired_options |= PWM_SERVO_SET_SAFETY_OPTION_DISABLE_BUTTON_ON;
}
if (!(options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_ARMED) && hal.util->get_soft_armed()) {
desired_options |= PWM_SERVO_SET_SAFETY_OPTION_DISABLE_BUTTON_OFF | PWM_SERVO_SET_SAFETY_OPTION_DISABLE_BUTTON_ON;
}
if (_last_safety_options != desired_options) {
if (ioctl(_pwm_fd, PWM_SERVO_SET_SAFETY_OPTIONS, desired_options) == OK) {
_last_safety_options = desired_options;
}
}
}
}
}
void PX4RCOutput::force_safety_no_wait(void)
{
if (_safety_state_request_last_ms != 0) {
_safety_state_request_last_ms = 1;
force_safety_pending_requests();
}
}
void PX4RCOutput::write(uint8_t ch, uint16_t period_us)
{
if (ch >= PX4_NUM_OUTPUT_CHANNELS) {
return;
}
if (!(_enabled_channels & (1U<<ch))) {
// not enabled
return;
}
if (ch >= _max_channel) {
_max_channel = ch + 1;
}
if (_output_mode == MODE_PWM_ONESHOT125) {
if (((ch < _servo_count) && ((1U<<ch) & _rate_mask_main)) ||
((ch >= _servo_count) && ((1U<<(ch-_servo_count)) & _rate_mask_alt))) {
// we treat oneshot125 very simply on HAL_PX4, with 1us
// resolution. Correctly handling it would use a 125 nsec
// step size, to give the full 1000 steps
period_us /= 8;
}
}
// keep unscaled value
_last_sent[ch] = period_us;
if (_output_mode == MODE_PWM_BRUSHED) {
// map from the PWM range to 0 t0 100% duty cycle. For 16kHz
// this ends up being 0 to 500 pulse width in units of
// 125usec.
if (period_us <= _esc_pwm_min) {
period_us = 0;
} else if (period_us >= _esc_pwm_max) {
period_us = _period_max;
} else {
uint32_t pdiff = period_us - _esc_pwm_min;
period_us = pdiff*_period_max/(_esc_pwm_max - _esc_pwm_min);
}
}
/*
only mark an update is needed if there has been a change, or we
are in oneshot mode. In oneshot mode we always need to send the
output
*/
if (period_us != _period[ch] ||
_output_mode == MODE_PWM_ONESHOT ||
_output_mode == MODE_PWM_ONESHOT125) {
_period[ch] = period_us;
_need_update = true;
}
}
uint16_t PX4RCOutput::read(uint8_t ch)
{
if (ch >= PX4_NUM_OUTPUT_CHANNELS) {
return 0;
}
// if px4io has given us a value for this channel use that,
// otherwise use the value we last sent. This makes it easier to
// observe the behaviour of failsafe in px4io
for (uint8_t i=0; i<ORB_MULTI_MAX_INSTANCES; i++) {
if (_outputs[i].pwm_sub >= 0 &&
ch < _outputs[i].outputs.noutputs &&
_outputs[i].outputs.output[ch] > 0) {
return _outputs[i].outputs.output[ch];
}
}
return _period[ch];
}
void PX4RCOutput::read(uint16_t* period_us, uint8_t len)
{
for (uint8_t i=0; i<len; i++) {
period_us[i] = read(i);
}
}
uint16_t PX4RCOutput::read_last_sent(uint8_t ch)
{
if (ch >= PX4_NUM_OUTPUT_CHANNELS) {
return 0;
}
return _last_sent[ch];
}
void PX4RCOutput::read_last_sent(uint16_t* period_us, uint8_t len)
{
for (uint8_t i=0; i<len; i++) {
period_us[i] = read_last_sent(i);
}
}
/*
update actuator armed state
*/
void PX4RCOutput::_arm_actuators(bool arm)
{
if (_armed.armed == arm) {
// already armed;
return;
}
_armed.timestamp = hrt_absolute_time();
_armed.armed = arm;
if (arm) {
// this latches ready_to_arm to true once set once. Otherwise
// we have a race condition with px4io safety switch update
_armed.ready_to_arm = true;
}
_armed.lockdown = false;
_armed.force_failsafe = false;
if (_actuator_armed_pub == nullptr) {
_actuator_armed_pub = orb_advertise(ORB_ID(actuator_armed), &_armed);
} else {
orb_publish(ORB_ID(actuator_armed), _actuator_armed_pub, &_armed);
}
}
void PX4RCOutput::_send_outputs(void)
{
uint32_t now = AP_HAL::micros();
if ((_enabled_channels & ((1U<<_servo_count)-1)) == 0) {
// no channels enabled
_arm_actuators(false);
goto update_pwm;
}
// always send at least at 20Hz, otherwise the IO board may think
// we are dead
if (now - _last_output > 50000) {
_need_update = true;
}
// check for PWM count changing. This can happen then the user changes BRD_PWM_COUNT
if (now - _last_config_us > 1000000) {
if (_pwm_fd != -1) {
ioctl(_pwm_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_servo_count);
}
if (_alt_fd != -1) {
ioctl(_alt_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_alt_servo_count);
}
_last_config_us = now;
}
if (_need_update && _pwm_fd != -1) {
_need_update = false;
perf_begin(_perf_rcout);
uint8_t to_send = _max_channel<_servo_count?_max_channel:_servo_count;
if (_sbus_enabled) {
to_send = _max_channel;
}
if (to_send > 0) {
for (int i=to_send-1; i >= 0; i--) {
if (_period[i] == PWM_IGNORE_THIS_CHANNEL) {
to_send = i;
} else {
break;
}
}
}
if (to_send > 0) {
_arm_actuators(true);
::write(_pwm_fd, _period, to_send*sizeof(_period[0]));
}
if (_max_channel > _servo_count) {
// maybe send updates to alt_fd
if (_alt_fd != -1 && _alt_servo_count > 0) {
uint8_t n = _max_channel - _servo_count;
if (n > _alt_servo_count) {
n = _alt_servo_count;
}
if (n > 0) {
::write(_alt_fd, &_period[_servo_count], n*sizeof(_period[0]));
}
}
}
perf_end(_perf_rcout);
_last_output = now;
}
update_pwm:
for (uint8_t i=0; i<ORB_MULTI_MAX_INSTANCES; i++) {
bool rc_updated = false;
if (_outputs[i].pwm_sub >= 0 &&
orb_check(_outputs[i].pwm_sub, &rc_updated) == 0 &&
rc_updated) {
orb_copy(ORB_ID(actuator_outputs), _outputs[i].pwm_sub, &_outputs[i].outputs);
}
}
}
void PX4RCOutput::cork()
{
#if RCOUT_DEBUG_LATENCY
hal.gpio->pinMode(55, HAL_GPIO_OUTPUT);
hal.gpio->write(55, 1);
#endif
_corking = true;
}
void PX4RCOutput::push()
{
#if RCOUT_DEBUG_LATENCY
hal.gpio->pinMode(55, HAL_GPIO_OUTPUT);
hal.gpio->write(55, 0);
#endif
if (_corking) {
_corking = false;
if (_output_mode == MODE_PWM_ONESHOT ||
_output_mode == MODE_PWM_ONESHOT125) {
// run timer immediately in oneshot mode
_send_outputs();
}
}
}
void PX4RCOutput::timer_tick(void)
{
if (_output_mode != MODE_PWM_ONESHOT && _output_mode != MODE_PWM_ONESHOT125 && !_corking) {
/* in oneshot mode the timer does nothing as the outputs are
* sent from push() */
_send_outputs();
}
force_safety_pending_requests();
}
/*
enable sbus output
*/
bool PX4RCOutput::enable_px4io_sbus_out(uint16_t rate_hz)
{
int fd = open("/dev/px4io", 0);
if (fd == -1) {
return false;
}
for (uint8_t tries=0; tries<10; tries++) {
if (ioctl(fd, SBUS_SET_PROTO_VERSION, 1) != 0) {
continue;
}
if (ioctl(fd, PWM_SERVO_SET_SBUS_RATE, rate_hz) != 0) {
continue;
}
close(fd);
_sbus_enabled = true;
return true;
}
close(fd);
return false;
}
/*
setup output mode
*/
void PX4RCOutput::set_output_mode(uint16_t mask, enum output_mode mode)
{
if (_output_mode == mode) {
// no change
return;
}
if (mode == MODE_PWM_ONESHOT || mode == MODE_PWM_ONESHOT125) {
// when using oneshot we don't want the regular pulses. The
// best we can do with the current PX4Firmware code is ask for
// 1Hz. This does still produce pulses, but the trigger calls
// mean the timer is constantly reset, so no pulses are
// produced except when triggered by push() when the main loop
// is running
set_freq_fd(_pwm_fd, _rate_mask_main, 1, _rate_mask_main);
if (_alt_fd != -1) {
set_freq_fd(_alt_fd, _rate_mask_alt, 1, _rate_mask_alt);
}
}
_output_mode = mode;
switch (_output_mode) {
case MODE_PWM_ONESHOT:
case MODE_PWM_ONESHOT125:
ioctl(_pwm_fd, PWM_SERVO_SET_ONESHOT, 1);
if (_alt_fd != -1) {
ioctl(_alt_fd, PWM_SERVO_SET_ONESHOT, 1);
}
break;
case MODE_PWM_DSHOT150:
case MODE_PWM_DSHOT300:
case MODE_PWM_DSHOT600:
case MODE_PWM_DSHOT1200:
case MODE_PWM_NONE:
// treat as normal PWM for now
hal.console->printf("DShot not supported\n");
FALLTHROUGH;
case MODE_PWM_NORMAL:
ioctl(_pwm_fd, PWM_SERVO_SET_ONESHOT, 0);
if (_alt_fd != -1) {
ioctl(_alt_fd, PWM_SERVO_SET_ONESHOT, 0);
}
break;
case MODE_PWM_BRUSHED:
// setup an 8MHz clock. This has the effect of scaling all outputs by 8x
ioctl(_pwm_fd, PWM_SERVO_SET_UPDATE_CLOCK, 8);
if (_alt_fd != -1) {
ioctl(_alt_fd, PWM_SERVO_SET_UPDATE_CLOCK, 8);
}
break;
}
}
// set default output update rate
void PX4RCOutput::set_default_rate(uint16_t rate_hz)
{
if (rate_hz != _default_rate_hz) {
// set servo update rate for first 8 pwm channels
ioctl(_pwm_fd, PWM_SERVO_SET_DEFAULT_UPDATE_RATE, rate_hz);
if (_alt_fd != -1) {
// set servo update rate for auxiliary channels
ioctl(_alt_fd, PWM_SERVO_SET_DEFAULT_UPDATE_RATE, rate_hz);
}
_default_rate_hz = rate_hz;
}
}
#endif // CONFIG_HAL_BOARD