ardupilot/libraries/SITL/SITL.cpp

80 lines
2.6 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
SITL.cpp - software in the loop state
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.
*/
#include <FastSerial.h>
#include <AP_Common.h>
#include <GCS_MAVLink.h>
#include <SITL.h>
// table of user settable parameters
const AP_Param::GroupInfo SITL::var_info[] PROGMEM = {
AP_GROUPINFO("BARO_RND", 0, SITL, baro_noise, 3),
AP_GROUPINFO("GYR_RND", 1, SITL, gyro_noise, 30),
AP_GROUPINFO("ACC_RND", 2, SITL, accel_noise, 3),
AP_GROUPINFO("MAG_RND", 3, SITL, mag_noise, 10),
AP_GROUPINFO("GPS_DISABLE",4, SITL, gps_disable, 0),
AP_GROUPINFO("DRIFT_SPEED",5, SITL, drift_speed, 0.2),
AP_GROUPINFO("DRIFT_TIME", 6, SITL, drift_time, 5),
AP_GROUPINFO("GPS_DELAY", 7, SITL, gps_delay, 4),
AP_GROUPINFO("ENGINE_MUL", 8, SITL, engine_mul, 1),
AP_GROUPEND
};
/* report SITL state via MAVLink */
void SITL::simstate_send(mavlink_channel_t chan)
{
double p, q, r;
float yaw;
// we want the gyro values to be directly comparable to the
// raw_imu message, which is in body frame
convert_body_frame(state.rollDeg, state.pitchDeg,
state.rollRate, state.pitchRate, state.yawRate,
&p, &q, &r);
// convert to same conventions as DCM
yaw = state.yawDeg;
if (yaw > 180) {
yaw -= 360;
}
mavlink_msg_simstate_send(chan,
ToRad(state.rollDeg),
ToRad(state.pitchDeg),
ToRad(yaw),
state.xAccel,
state.yAccel,
state.zAccel,
p, q, r,
state.latitude,
state.longitude);
}
// convert a set of roll rates from earth frame to body frame
void SITL::convert_body_frame(double rollDeg, double pitchDeg,
double rollRate, double pitchRate, double yawRate,
double *p, double *q, double *r)
{
double phi, theta, phiDot, thetaDot, psiDot;
phi = ToRad(rollDeg);
theta = ToRad(pitchDeg);
phiDot = ToRad(rollRate);
thetaDot = ToRad(pitchRate);
psiDot = ToRad(yawRate);
*p = phiDot - psiDot*sin(theta);
*q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta);
*r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot;
}